微生物燃料電池產(chǎn)電性能及處理偶氮染料廢水研究
發(fā)布時間:2018-03-10 05:28
本文選題:微生物燃料電池 切入點:陽極修飾 出處:《河南師范大學》2014年博士論文 論文類型:學位論文
【摘要】:近年來興起和快速發(fā)展的微生物燃料電池(Microbial fuel cell, MFC)技術(shù)能直接利用廢水中多種有機物作為燃料,在降解污染物的同時直接收獲電能,是一種革命性的廢水處理工藝,受到國內(nèi)外學者的廣泛關(guān)注。目前限制MFC實際應用的一個關(guān)鍵問題就是輸出功率較低。在影響其功率輸出的諸多因素中,陽極因為影響微生物的吸附和生長代謝,以及電子從微生物到電極之間的傳遞而被認為是一個關(guān)鍵因素。目前廣泛采用的商業(yè)化的碳基材料存在比表面積有限,,電化學活性較小等不利因素。利用能增加電極比表面積和促進電子傳遞的某種電活性材料對碳材料表面進行修飾是一種行之有效的解決方法。 本文從產(chǎn)電和廢水處理兩方面著手,探索借助陽極修飾的方法提高MFC產(chǎn)電性能的可行性;并以典型偶氮染料甲基橙為目標污染物,考察甲基橙在MFC中的脫色效果及同步產(chǎn)電性能。論文主要研究內(nèi)容和成果如下: (1)用檸檬酸鹽還原氯金酸的方法制備粒徑約為20nm的金納米粒子。首次利用層層組裝技術(shù)將金納米粒子修飾到碳紙電極表面,并利用紫外-可見光譜監(jiān)測了薄膜的規(guī)律生長。循環(huán)伏安和電化學交流阻抗實驗表明:納米金修飾碳紙電極較空白碳紙電極表現(xiàn)出更好的電化學行為,包括更大的電活性表面積,更快的電子轉(zhuǎn)移速率及更小的界面電子傳遞阻力。相比空白碳紙陽極組裝的MFC,利用納米金修飾碳紙陽極組裝的MFC達到最大輸出功率346mW m-2,提高了50%,啟動時間為175h,縮短了36%。實驗結(jié)果表明:層層組裝技術(shù)是將納米金修飾到碳紙電極上的一種簡單有效的方法,而且利用該修飾電極能夠有效提高微生物燃料電池的產(chǎn)電性能。 (2)利用化學還原氧化石墨烯(Graphene Oxide, GO)的方法制備并表征了石墨烯(Graphene, GR)。采用層層組裝技術(shù)將石墨烯修飾到碳紙電極表面,并探討該方法能否有效提高MFC的電能輸出和對甲基橙的高效去除。循環(huán)伏安和電化學交流阻抗實驗表明:石墨烯修飾碳紙電極較空白碳紙電極表現(xiàn)出更好的電化學行為。掃描電子顯微鏡結(jié)果顯示:修飾電極表面的粗糙度增加,有利于更多的細菌附著在陽極表面。相比空白碳紙陽極組裝的MFC,利用石墨烯修飾電極作為陽極的MFC達到最大輸出功率368mWm-2,提高了51%,啟動時間為180h,縮短了31%。陽極和陰極極化曲線表明:兩種反應器的陰極電壓之間沒有明顯區(qū)別,而陽極電壓存在明顯區(qū)別,這說明提高微生物燃料電池能量輸出的關(guān)鍵是石墨烯修飾陽極,而不是陰極。同時,相比于空白陽極MFC,石墨烯修飾陽極MFC在實現(xiàn)更高能量輸出的同時,還實現(xiàn)了更高效的甲基橙去除,脫色率提高11%,COD去除率提高16%。該研究為提高微生物燃料電池的產(chǎn)電性能和甲基橙同步脫色提供了一種簡單有效的方法。 (3)采用所構(gòu)建的雙室方形微生物燃料電池處理甲基橙模擬廢水。在進水甲基橙濃度為50-800mg L1、共基質(zhì)(葡萄糖)濃度為0-2.0mg L1的條件下,系統(tǒng)考察了MFC對甲基橙的脫色效果和同步產(chǎn)電的影響。在MFC以甲基橙-葡萄糖為混合燃料連續(xù)工作6個月后,通過生物多樣性分析揭示了陽極生物膜微生物組成的基本信息。結(jié)果發(fā)現(xiàn):在一定濃度范圍內(nèi),陽極室中加入的甲基橙對微生物燃料電池產(chǎn)電有積極的促進作用。當使用1g L-1葡萄糖為單一燃料時,MFC的最大輸出電壓為565mV,當在陽極液中添加甲基橙濃度分別為50、100、200、300和500mg L1時,MFC的最大輸出電壓分別提高至658、640、629、617和605mV。從脫色方面看,甲基橙在MFC中可以實現(xiàn)加速脫色,相比于開路情況(相當于普通厭氧反應器),反應8h后甲基橙在MFC中的脫色率提高了57%;在葡萄糖濃度一定的條件下,隨著甲基橙負荷的增加,脫色效率隨之下降。另外,研究發(fā)現(xiàn)共基質(zhì)的存在對甲基橙的高效脫色和同步產(chǎn)電是必須的。在所研究共基質(zhì)濃度范圍內(nèi),共基質(zhì)濃度越大,脫色效率和COD去除效率越高,同時輸出電壓也越大。而在無共基質(zhì)存在的條件下,8h內(nèi)MFC對300mg L-1甲基橙的脫色率僅為7.5%,最大輸出電壓僅為140mV。454-高通量測序揭示了陽極生物膜的微生物種群基本信息,經(jīng)NCBI網(wǎng)站比對的測序結(jié)果表明:經(jīng)過長時間的馴化,陽極生物膜已經(jīng)優(yōu)化出了對甲基橙具有降解能力的Bacteroidia、Desulfovibrio和Trichococcus及其適合產(chǎn)電的Geobacter兩大菌群。
[Abstract]:The rise in recent years and the rapid development of the microbial fuel cell (Microbial fuel, cell, MFC) technology can use a variety of organic compounds in wastewater as fuel in the degradation of pollutants and harvest power, is a revolutionary wastewater treatment process, attracted wide attention of scholars. A key problem in the limit of MFC the actual application is the low output power. The factors influencing the power output, because the anode effects of adsorption and growth of microbes and microbes to transfer electrons from between the electrodes and is considered to be a key factor. The commercialization of carbon based materials are widely used in the electrochemical surface area limited. Less active and other unfavorable factors. By increasing the electrode surface area and promoting the electron transfer of electroactive materials on carbon surface modification is an effective The solution.
This article from the electricity generation and wastewater treatment in two aspects, explore the method by means of anode modification feasibility to improve the performance of MFC; and the typical azo dye methyl orange as target pollutant, the decolorization effect in MFC of methyl orange and synchronous electricity production. The main research contents and results are as follows:
(1) reduction of chloroauric acid to prepare a particle size of about 20nm gold nanoparticles with citric acid salt. For the first time using the LbL assembly technique will be modified with gold nanoparticles to carbon paper electrode surface, and UV Vis Spectrum Monitoring film growth pattern. The results indicated that cyclic voltammetry and electrochemical impedance experiments: Gold nanoparticles modified compared with the blank carbon paper electrode carbon paper electrode shows better electrochemical behavior, including more electroactive surface area, interfacial electron electron transfer rate and smaller transfer resistance faster. Compared to blank carbon paper anode assembly MFC, using nano gold modified carbon paper anode assembly of MFC reached the maximum output power of 346mW m-2, increased by 50%, to start time is 175h, shorten the 36%. experimental results show that the self-assembly technology is the gold nanoparticles modified to a simple and effective method of carbon paper electrode, and the use of the modified electrode It can effectively improve the electrical performance of the microbial fuel cell.
(2) by chemical reduction of graphene oxide (Graphene Oxide GO) method of preparation and characterization of graphene (Graphene, GR). By using the layer by layer self-assembly technique of graphene modified carbon paper electrode surface, and discusses the method can effectively improve the power output and the efficient removal of methyl orange MFC show. Cyclic voltammetry and electrochemical impedance experiments: graphene modified carbon paper electrode compared with the blank carbon paper electrode showed better electrochemical behavior. Scanning electron microscopy results showed that the modified electrode surface roughness increases, is conducive to more bacteria attached on the surface of the anode. Compared to blank carbon paper anode assembly of the MFC, using a graphene modified electrode as anode the MFC reached the maximum output power of 368mWm-2, increased by 51% and the start time of 180h, shorten the 31%. anodic and cathodic polarization curves show that no voltage between the cathode two reactor The obvious difference, and the anode voltage has the obvious difference, which shows that the key to improve the energy output of the microbial fuel cell is a graphene modified anode and cathode instead. At the same time, compared to the blank MFC anode, graphene modified anode in MFC to achieve higher energy output at the same time, also achieved a more efficient removal of methyl orange, the decolorization rate increased 11%, the removal rate of COD increased 16%. the study provides a simple and effective method for improving microbial fuel cell electricity generation and synchronization of methyl orange decolorization.
(3) the construction of the dual chamber microbial fuel cell square treatment of methyl orange wastewater. When the influent concentration of methyl orange 50-800mg L1, CO substrate (glucose) concentration was 0-2.0mg L1, investigated the decolorization of methyl orange MFC and effect of synchronous electricity production. In the MFC methyl orange - glucose mixed fuel after working for 6 months, the biodiversity analysis reveals the basic information of the composition of the anodic microbial biofilm. The results showed that in a certain range of concentration, into the anode chamber of methyl orange has a positive effect on performance of microbial fuel cell. When using 1g L-1 glucose as fuel, the maximum output voltage MFC for 565mV, when the anolyte added concentration of methyl orange were 50100200300 and 500mg L1, the maximum output voltage of MFC were increased to 658640629617 and 605mV. from the decolorization Look, can accelerate the decolorization of methyl orange in MFC, compared to the open circuit condition (equivalent to ordinary anaerobic reactor), after 8h reaction in MFC methyl orange decolorization rate increased by 57%; in the condition of glucose concentration is constant, with the increase of methyl orange load, decolorization efficiency declined. In addition, the study found that there were the matrix of efficient decolorization of methyl orange and synchronous electricity production is a must. In the study of CO substrate concentration, CO substrate concentration increased, the decolorization rate and COD removal efficiency is high, while the output voltage is greater than that in the condition of CO substrate, 300mg L-1 on decolorization rate of methyl orange 8h MFC is only 7.5%, the maximum output voltage is only 140mV.454- high-throughput sequencing revealed the microbial population basic information of the anode biofilm, sequencing by NCBI site comparison results showed that after long time domestication, the anode biofilm has The degradation ability of Bacteroidia, Desulfovibrio and Trichococcus and the two major Geobacter bacteria suitable for electricity production were optimized.
【學位授予單位】:河南師范大學
【學位級別】:博士
【學位授予年份】:2014
【分類號】:X788;TM911.45
【參考文獻】
相關(guān)期刊論文 前10條
1 黃霞;梁鵬;曹效鑫;范明志;;無介體微生物燃料電池的研究進展[J];中國給水排水;2007年04期
2 丁巍巍;汪家權(quán);呂劍;夏雪蘭;;微生物燃料電池處理苯酚廢水[J];合肥工業(yè)大學學報(自然科學版);2010年01期
3 姚素薇;鄒毅;張衛(wèi)國;;金納米粒子的特性、制備及應用研究進展[J];化工進展;2007年03期
4 蔡小波;楊毅;孫彥平;張良;肖瑤;趙海;;微生物燃料電池利用甘薯燃料乙醇廢水產(chǎn)電的研究[J];環(huán)境科學;2010年10期
5 曹效鑫;梁鵬;黃霞;;“三合一”微生物燃料電池的產(chǎn)電特性研究[J];環(huán)境科學學報;2006年08期
6 劉宏芳;鄭碧娟;;微生物燃料電池[J];化學進展;2009年06期
7 李泉,曾廣賦,席時權(quán);納米粒子[J];化學通報;1995年06期
8 劉士Y
本文編號:1591985
本文鏈接:http://sikaile.net/kejilunwen/dianlilw/1591985.html
最近更新
教材專著