大型風(fēng)電場基于CFD技術(shù)的儲能容量優(yōu)化計(jì)算方法
本文選題:風(fēng)力發(fā)電機(jī)組 切入點(diǎn):輸出功率期望值 出處:《上海交通大學(xué)》2015年碩士論文 論文類型:學(xué)位論文
【摘要】:2015年1月初發(fā)布的數(shù)據(jù):我國風(fēng)力發(fā)電總裝機(jī)容量已達(dá)1.147億千瓦,風(fēng)電裝機(jī)在體量上已經(jīng)遙遙領(lǐng)先各國,但是由于中國用電負(fù)荷中心集中在東部沿海,而風(fēng)電的輸送受調(diào)峰、電網(wǎng)、地域等眾多因素限制,使“三北地區(qū)”出現(xiàn)了大面積棄用風(fēng)電上網(wǎng)的現(xiàn)象,數(shù)據(jù)顯示國內(nèi)棄風(fēng)限電規(guī)模已經(jīng)居世界首位。一邊是大面積的“綠色能源”被白白浪費(fèi),另一邊是煤炭、石油等化石能源的過度消耗導(dǎo)致的日益嚴(yán)重的環(huán)境污染和能源危機(jī),為了破解上述尷尬處境,讓風(fēng)電的輸出穩(wěn)定、可控是解決問題的關(guān)鍵。為了使每一臺風(fēng)機(jī)都成為風(fēng)場中的可調(diào)度單元,減少電力系統(tǒng)旋轉(zhuǎn)備用容量,最好的辦法就是為每臺風(fēng)機(jī)配備儲能裝置,使其在要求的時(shí)間內(nèi)能保持風(fēng)機(jī)的穩(wěn)定輸出,這就引出了如何配置不同風(fēng)場儲能容量的問題。由于風(fēng)場建設(shè)區(qū)域場地條件一般比較復(fù)雜,而在傳統(tǒng)研究風(fēng)場儲能容量時(shí),會取整個(gè)風(fēng)場中單獨(dú)某一臺風(fēng)機(jī)建立數(shù)學(xué)模型,來進(jìn)行分析計(jì)算,并將計(jì)算得到的儲能容量值作為代表全場的平均水平,在上述假設(shè)中,我們?nèi)藶榈陌扬L(fēng)場內(nèi)的所有的風(fēng)電機(jī)組的期望風(fēng)速和期望的輸出功率的值都認(rèn)為是相同,而忽略了風(fēng)電場中風(fēng)機(jī)受到地形、尾流等因素影響,因此,采用理想數(shù)學(xué)模型計(jì)算的儲能容量與實(shí)際情況有較大差異,容易造成儲能容量太大或儲能成本過高。目前雖然大容量儲能技術(shù)瓶頸已經(jīng)突破,但是大容量儲能的成本依然過高,研究如何用最小的儲能容量滿足風(fēng)電場在要求時(shí)間內(nèi)的持續(xù)輸出很有意義。為了解決上述問題,本文提出了一種“大型風(fēng)電場基于CFD技術(shù)的儲能容量優(yōu)化計(jì)算方法”。CFD(computational fluid dynamics technology)技術(shù)作為計(jì)算流體力學(xué)的分支,為計(jì)算風(fēng)電場的最優(yōu)儲能容量提供了一種解決方法,基于雷諾相似理論,運(yùn)用計(jì)算機(jī)技術(shù)和WT軟件模擬風(fēng)場實(shí)際情況,建立計(jì)算模型,從計(jì)算流體力學(xué)的方向上來計(jì)算最優(yōu)儲能容量的問題。以給定的實(shí)際場地條件、風(fēng)場植被、氣壓、空氣密度、功率曲線、測風(fēng)塔的測風(fēng)的數(shù)據(jù)為基礎(chǔ),通過計(jì)算機(jī)技術(shù)和CFD內(nèi)核的WT軟件模擬計(jì)算,得到整個(gè)風(fēng)場中詳細(xì)到每個(gè)風(fēng)機(jī)點(diǎn)位上的風(fēng)能資源分布情況,結(jié)合功率曲線,計(jì)算出每個(gè)機(jī)位點(diǎn)上的風(fēng)的變化情況、發(fā)電量、輸出功率期望值E等參數(shù)值,再根據(jù)儲能設(shè)備容量計(jì)算公式S=Pn×E×H計(jì)算出每臺機(jī)位所需的最優(yōu)儲能容量。該方法計(jì)算得到的結(jié)果更為接近真實(shí)情況,以期為風(fēng)電場儲能的投資、開發(fā)、設(shè)計(jì)提供決策參考。
[Abstract]:Data released in early January of 2015: the total installed capacity of wind power in China has reached 147 million kilowatts, and the installed capacity of wind turbines has been far ahead of other countries in volume. However, because the power load centers in China are concentrated in the eastern coast, the transmission of wind power is peak-shaved. Many factors, such as power grids and geographical constraints, have led to the phenomenon of large-scale abandonment of wind power from the Internet in the "three northern regions". Data show that the scale of wind power loss in China has already ranked first in the world. On the other hand, a large area of "green energy" has been wasted. On the other side is the increasingly serious environmental pollution and energy crisis caused by excessive consumption of fossil energy such as coal and petroleum. In order to solve the above embarrassing situation and stabilize the output of wind power, Controllability is the key to solving the problem. In order to make every typhoon machine become a schedulable unit in the wind field and reduce the power system rotation reserve capacity, the best way is to equip each typhoon machine with a storage device. The steady output of the fan can be maintained in the required time, which leads to the problem of how to configure the energy storage capacity of different wind fields. Because of the complex site conditions in the wind field construction area, in the traditional study of the energy storage capacity of the wind field, A mathematical model of a single typhoon in the whole wind field will be taken to analyze and calculate, and the calculated energy storage capacity will be taken as the average level representing the whole field. In the above assumption, We artificially assume that the expected wind speed and the expected output power of all wind turbines in the wind field are the same, but we ignore that the wind turbines in the wind farm are affected by the topography, wake and other factors, so, The energy storage capacity calculated by the ideal mathematical model is quite different from the actual situation, and it is easy to cause the energy storage capacity to be too large or the energy storage cost is too high. Although the bottleneck of large capacity energy storage technology has been broken through, the cost of large capacity energy storage is still too high. It is meaningful to study how to use the minimum energy storage capacity to satisfy the sustained output of wind farm in the required time. In this paper, a method for calculating the energy storage capacity of large wind farm based on CFD technology is proposed. As a branch of computational fluid mechanics, the technology of CFDF computing fluid dynamics technology is used as a branch of computational fluid dynamics, which provides a solution for calculating the optimal energy storage capacity of wind farm. Based on Renault similarity theory, using computer technology and WT software to simulate the actual wind field, a computational model is established to calculate the optimal energy storage capacity from the direction of computational fluid dynamics. On the basis of air pressure, air density, power curve, wind measurement data of wind tower, the distribution of wind energy resources in the whole wind field is obtained by computer technology and WT software in the core of CFD. Combined with the power curve, the variation of wind at each station point, the output power, the expected value of output power and so on are calculated. The optimal energy storage capacity for each station is calculated according to the capacity calculation formula of energy storage equipment, Sn 脳 E 脳 H. the results obtained by this method are more close to the real situation, in order to provide a decision reference for the investment, development and design of wind farm energy storage.
【學(xué)位授予單位】:上海交通大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2015
【分類號】:TM614
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 李成;楊秀;張美霞;王海波;葉建華;陳潔;;基于成本分析的超級電容器和蓄電池混合儲能優(yōu)化配置方案[J];電力系統(tǒng)自動化;2013年18期
2 趙斌;陳紅寶;;民勤紅沙崗百萬千瓦級風(fēng)電基地風(fēng)機(jī)排布優(yōu)化研究[J];甘肅水利水電技術(shù);2013年09期
3 張曉東;;風(fēng)電場風(fēng)資源計(jì)算的CFD模型研究[J];現(xiàn)代電力;2013年04期
4 李辰奇;許昌;楊建川;甄文忠;劉德有;鄭源;;基于CFD的復(fù)雜地形風(fēng)能分布研究[J];上海理工大學(xué)學(xué)報(bào);2013年03期
5 國家電網(wǎng)公司"電網(wǎng)新技術(shù)前景研究"項(xiàng)目咨詢組;王松岑;來小康;程時(shí)杰;;大規(guī)模儲能技術(shù)在電力系統(tǒng)中的應(yīng)用前景分析[J];電力系統(tǒng)自動化;2013年01期
6 赫新;張來平;趙鐘;鄧小剛;;大型通用CFD軟件體系結(jié)構(gòu)與數(shù)據(jù)結(jié)構(gòu)研究[J];空氣動力學(xué)學(xué)報(bào);2012年05期
7 張坤;毛承雄;謝俊文;陸繼明;王丹;曾杰;陳迅;;風(fēng)電場復(fù)合儲能系統(tǒng)容量配置的優(yōu)化設(shè)計(jì)[J];中國電機(jī)工程學(xué)報(bào);2012年25期
8 盧繼平;朱三立;韓濤;呂東;劉蕾;;風(fēng)電場儲能容量合理取值范圍分析[J];重慶大學(xué)學(xué)報(bào);2010年08期
9 陳毅東;楊育林;王立喬;賈志云;趙巍;萬承寬;;風(fēng)力發(fā)電最大功率點(diǎn)跟蹤技術(shù)及仿真分析[J];高電壓技術(shù);2010年05期
10 阮軍鵬;張建成;汪娟華;;飛輪儲能系統(tǒng)改善并網(wǎng)風(fēng)電場穩(wěn)定性的研究[J];電力科學(xué)與工程;2008年03期
,本文編號:1581092
本文鏈接:http://sikaile.net/kejilunwen/dianlilw/1581092.html