特高壓直流輸電換相失敗特性研究
本文選題:特高壓直流(UHVDC) 切入點(diǎn):暫態(tài)過(guò)程 出處:《昆明理工大學(xué)》2014年碩士論文 論文類(lèi)型:學(xué)位論文
【摘要】:隨著社會(huì)經(jīng)濟(jì)的迅速發(fā)展,人們對(duì)于電力的需求也在日益增加。我國(guó)雖地域遼闊,但電力能源的分布與電力負(fù)荷需求區(qū)域的分布卻極不平衡,為了實(shí)現(xiàn)資源的合理利用以及能源的優(yōu)化供應(yīng),發(fā)展遠(yuǎn)距離、大容量的交直流混合輸電系統(tǒng)成為了發(fā)展的必然趨勢(shì)。特高壓直流輸電系統(tǒng)不僅在遠(yuǎn)距離、大容量輸電方面較交流輸電系統(tǒng)具有明顯的優(yōu)勢(shì),而且其控制方式也靈活方便,有利于電力系統(tǒng)的穩(wěn)定運(yùn)行。特高壓直流輸電線(xiàn)路由于其電壓等級(jí)高,往往需要跨越大量的山地丘陵等復(fù)雜的環(huán)境,故其線(xiàn)路發(fā)生短路故障的概率就較高。 為了研究特高壓直流輸電換相失敗的特性,本文首先介紹并分析了特高壓直流輸電系統(tǒng)的控制特性,在此基礎(chǔ)上,利用云廣±800kV特高壓直流輸電工程實(shí)際參數(shù)以及PSCAD仿真平臺(tái)建立仿真模型,通過(guò)對(duì)特高壓直流輸電系統(tǒng)不同故障點(diǎn)的暫態(tài)控制特性進(jìn)行仿真和分析,驗(yàn)證了其模型的準(zhǔn)確性。 換相失敗是特高壓直流輸電系統(tǒng)常見(jiàn)的故障之一。本文詳細(xì)分析了換流站逆變側(cè)發(fā)生換相失敗的機(jī)理、原因、以及影響因素,提出了一些防止特高壓直流輸電系統(tǒng)發(fā)生換相失敗的預(yù)防措施,并對(duì)逆變側(cè)交流輸電系統(tǒng)發(fā)生各種類(lèi)型的短路故障進(jìn)行了仿真分析。其結(jié)果表明:逆變側(cè)的交流母線(xiàn)發(fā)生各種不同類(lèi)型的金屬性接地故障時(shí),逆變側(cè)均會(huì)發(fā)生換相失敗。隨著接地過(guò)渡電阻的增加,各故障電氣量的變化幅度會(huì)減小,當(dāng)過(guò)渡電阻達(dá)到臨界換相失敗電阻值時(shí),逆變側(cè)將不會(huì)發(fā)生換相失敗。當(dāng)故障切除后,直流系統(tǒng)均能很快恢復(fù)至正常狀態(tài)。 直流系統(tǒng)逆變側(cè)發(fā)生換相失敗后,在系統(tǒng)的調(diào)節(jié)以及恢復(fù)的過(guò)程中不僅會(huì)產(chǎn)生大量的諧波分量,而且可能會(huì)造成交流系統(tǒng)線(xiàn)路發(fā)生暫態(tài)功率倒向,這都將對(duì)交流系統(tǒng)的保護(hù)產(chǎn)生影響,本文對(duì)暫態(tài)功率倒向現(xiàn)象進(jìn)行了特性分析及仿真,并針對(duì)換相失敗對(duì)交流系統(tǒng)產(chǎn)生的影響進(jìn)行了分析,并提出了防止保護(hù)誤動(dòng)的措施。
[Abstract]:With the rapid development of social economy, people's demand for electricity is increasing day by day. Although our country has a vast territory, the distribution of power energy and the distribution of power load demand region are very unbalanced. In order to realize the rational utilization of resources and the optimization of energy supply, the development of long-distance AC / DC hybrid transmission system with large capacity has become an inevitable trend. Large capacity transmission has obvious advantages over AC transmission system, and its control mode is also flexible and convenient, which is conducive to the stable operation of power system. It is often necessary to cross a large number of mountain hills and other complex environments, so the probability of short circuit fault is higher. In order to study the characteristics of UHVDC commutation failure, this paper first introduces and analyzes the control characteristics of UHVDC system. The simulation model is established by using the actual parameters of Yunguang 鹵800kV UHVDC transmission project and the PSCAD simulation platform. The simulation and analysis of transient control characteristics at different fault points of UHVDC system are carried out to verify the accuracy of the model. Commutation failure is one of the common faults in UHVDC transmission system. This paper analyzes in detail the mechanism, causes and influencing factors of commutation failure on inverter side of converter station. Some preventive measures to prevent the commutation failure of UHVDC transmission system are put forward. Simulation analysis of various types of short-circuit faults occurred in AC transmission system of inverter side shows that when various types of gold attribute grounding faults occur in AC busbar of inverter side, Commutation failure will occur in the inverter side. With the increase of the grounding transition resistance, the change of the electrical quantity of each fault will decrease. When the transition resistance reaches the critical value of the commutation failure resistance, the commutation failure will not occur in the inverter side. When the fault is removed, the commutation failure will not occur in the inverter side. DC systems can quickly return to normal condition. After commutation failure occurs in the inverter side of DC system, not only a large number of harmonic components will be produced in the adjustment and recovery process of the system, but also the transient power reversal of the AC system line may occur. All of these will affect the protection of AC system. This paper analyzes and simulates the transient power reverse phenomenon, analyzes the effect of commutation failure on AC system, and puts forward some measures to prevent the protection from maloperation.
【學(xué)位授予單位】:昆明理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2014
【分類(lèi)號(hào)】:TM721.1
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 楊汾艷,徐政;直流輸電系統(tǒng)典型暫態(tài)響應(yīng)特性分析[J];電工技術(shù)學(xué)報(bào);2005年03期
2 韓英鐸,姜齊榮,謝小榮,沈斐;從美加大停電事故看我國(guó)電網(wǎng)安全穩(wěn)定對(duì)策的研究[J];電力設(shè)備;2004年03期
3 高錫明,張鵬,賀智;直流輸電線(xiàn)路保護(hù)行為分析[J];電力系統(tǒng)自動(dòng)化;2005年14期
4 劉之堯;唐卓堯;張文峰;黃明輝;段新輝;趙曼勇;張弛;張哲;;直流換相失敗引起繼電保護(hù)誤動(dòng)分析[J];電力系統(tǒng)自動(dòng)化;2006年19期
5 王鋼;李志鏗;李海鋒;;±800kV特高壓直流線(xiàn)路暫態(tài)保護(hù)[J];電力系統(tǒng)自動(dòng)化;2007年21期
6 黃志嶺;田杰;;基于詳細(xì)直流控制系統(tǒng)模型的EMTDC仿真[J];電力系統(tǒng)自動(dòng)化;2008年02期
7 朱韜析;武誠(chéng);王超;;交流系統(tǒng)故障對(duì)直流輸電系統(tǒng)的影響及改進(jìn)建議[J];電力系統(tǒng)自動(dòng)化;2009年01期
8 李海鋒;張璞;王鋼;朱革蘭;趙曼勇;周紅陽(yáng);趙有鋮;;直流饋入下的工頻變化量方向縱聯(lián)保護(hù)動(dòng)作特性分析 (二)故障線(xiàn)路的方向保護(hù)[J];電力系統(tǒng)自動(dòng)化;2009年10期
9 李海鋒;張璞;王鋼;朱革蘭;趙曼勇;丁曉兵;;直流饋入下的工頻變化量方向縱聯(lián)保護(hù)動(dòng)作特性分析 (三)非故障線(xiàn)路的方向保護(hù)[J];電力系統(tǒng)自動(dòng)化;2009年11期
10 李?lèi)?ài)民;蔡澤祥;李曉華;劉永浩;;高壓直流輸電線(xiàn)路行波保護(hù)影響因素分析及改進(jìn)[J];電力系統(tǒng)自動(dòng)化;2010年10期
,本文編號(hào):1570810
本文鏈接:http://sikaile.net/kejilunwen/dianlilw/1570810.html