太陽(yáng)能熱發(fā)電站熱力系統(tǒng)動(dòng)態(tài)特性仿真
本文選題:太陽(yáng)能熱發(fā)電站 切入點(diǎn):熱力系統(tǒng) 出處:《重慶大學(xué)》2014年碩士論文 論文類型:學(xué)位論文
【摘要】:隨著能源危機(jī)和大量使用化石能源帶來(lái)的環(huán)境問(wèn)題日益嚴(yán)峻,清潔能源吸引了世界各界的目光。太陽(yáng)能、核能、水能和風(fēng)能是目前應(yīng)用最好的四大清潔能源。其中,太陽(yáng)能熱發(fā)電是大規(guī)模開發(fā)和利用太陽(yáng)能的一個(gè)重要方式,已成為世界各國(guó)學(xué)者研究的重點(diǎn)。較多學(xué)者只對(duì)太陽(yáng)能熱發(fā)電站熱力系統(tǒng)中單一設(shè)備或者子系統(tǒng)進(jìn)行了研究,但是對(duì)太陽(yáng)能熱發(fā)電站整個(gè)熱力系統(tǒng)研究較少,所以為了保證太陽(yáng)能熱發(fā)電站能夠穩(wěn)定、安全地運(yùn)行,對(duì)太陽(yáng)能熱發(fā)電站整個(gè)熱力系統(tǒng)的動(dòng)態(tài)特性進(jìn)行研究是非常有必要的。本論文以太陽(yáng)能熱發(fā)電站熱力系統(tǒng)為研究對(duì)象,主要研究了在不同運(yùn)行模式下,太陽(yáng)輻照變化時(shí)熱力系統(tǒng)的動(dòng)態(tài)響應(yīng)。主要工作如下: ①根據(jù)模塊化建模思想,以設(shè)備為單元,將該熱力系統(tǒng)分為接收器、油罐、管殼式換熱器(殼側(cè)流體是導(dǎo)熱油工質(zhì)、管側(cè)流體是水蒸汽)、蒸汽蓄熱器以及汽輪機(jī)、凝汽器、除氧器和閥門、泵、管道等模塊。 ②采用集中參數(shù)法建立了油罐、管殼式換熱器、蒸汽蓄熱器的數(shù)學(xué)模型和仿真模型,并改寫了以導(dǎo)熱油為工質(zhì)的泵、閥門和管道模塊,對(duì)所有新建模塊進(jìn)行了測(cè)試,并將這些模塊加入到MMS模塊庫(kù)中。 ③應(yīng)用MMS仿真平臺(tái),搭建了完整的太陽(yáng)能熱發(fā)電站熱力系統(tǒng)的仿真模型,進(jìn)行了仿真模型與實(shí)際系統(tǒng)設(shè)計(jì)值的比較。 ④在此模型基礎(chǔ)上,,完成了輻照度不同擾動(dòng)方式(階躍、斜坡)、不同幅度(5%、10%)、控制系統(tǒng)不同投入狀態(tài),以及蓄熱系統(tǒng)參與運(yùn)行等多組仿真試驗(yàn)研究。 通過(guò)仿真計(jì)算結(jié)果與實(shí)際系統(tǒng)值的比較和多組動(dòng)態(tài)仿真試驗(yàn),證明所建模型符合熱動(dòng)力系統(tǒng)運(yùn)行機(jī)理,具有一定仿真精度。在蓄熱系統(tǒng)未投入運(yùn)行和輻照變化較小時(shí),可以通過(guò)控制系統(tǒng)的調(diào)節(jié)作用,使得汽輪機(jī)功率逐漸恢復(fù)到額定值;輻照變化較大時(shí),蓄熱系統(tǒng)投入運(yùn)行,可以有效地降低輻照對(duì)汽輪機(jī)功率的影響。本文的研究結(jié)果為進(jìn)一步研究控制策略和運(yùn)行方式奠定了基礎(chǔ)。
[Abstract]:With the energy crisis and the growing environmental problems caused by the massive use of fossil energy, clean energy has attracted worldwide attention. Solar, nuclear, hydro and wind energy are the four best used clean energy sources. Solar thermal power generation is an important way to develop and utilize solar energy on a large scale and has become the focus of scholars all over the world. But there is little research on the whole thermal system of the solar thermal power station, so in order to ensure the stable and safe operation of the solar thermal power station, It is necessary to study the dynamic characteristics of the whole thermal system of solar thermal power station. The dynamic response of thermal system to solar radiation. The main work is as follows:. 1 according to the idea of modular modeling, the thermodynamic system is divided into receiver, oil tank, tube and shell heat exchanger (shell side fluid is heat conduction oil working fluid, tube side fluid is steam steam, steam accumulator, steam turbine, condenser, etc. Deaerator and valves, pumps, pipes and other modules. (2) the mathematical model and simulation model of oil tank, shell heat exchanger and steam accumulator were established by means of lumped parameter method, and the pump, valve and pipeline modules with heat conduction oil as working fluid were rewritten, and all the new modules were tested. These modules are added to the MMS module library. 3 using MMS simulation platform, a complete simulation model of solar thermal power station thermal power system is built, and the simulation model is compared with the actual system design value. 4 on the basis of this model, the simulation experiments of different irradiance disturbance modes (step, slope, different amplitude, different input state of control system and heat storage system are completed. By comparing the simulation results with the actual system values and many dynamic simulation tests, it is proved that the established model accords with the operation mechanism of the thermal power system and has a certain simulation accuracy. By regulating the control system, the steam turbine power can be gradually restored to the rated value. When the radiation change is large, the heat storage system is put into operation. It can effectively reduce the effect of irradiation on steam turbine power. The results of this paper lay a foundation for further study on control strategy and operation mode.
【學(xué)位授予單位】:重慶大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2014
【分類號(hào)】:TM615
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 廖葵;龍新峰;;塔式太陽(yáng)能熱力發(fā)電技術(shù)進(jìn)展[J];廣東電力;2007年04期
2 高維;徐蕙;徐二樹;余強(qiáng);;八達(dá)嶺太陽(yáng)能塔式熱發(fā)電吸熱器水動(dòng)力特性仿真研究[J];工程熱物理學(xué)報(bào);2012年08期
3 杜鳳麗;原郭豐;常春;盧智恒;;太陽(yáng)能熱發(fā)電技術(shù)產(chǎn)業(yè)發(fā)展現(xiàn)狀與展望[J];儲(chǔ)能科學(xué)與技術(shù);2013年06期
4 ;光熱發(fā)電 光伏發(fā)電之后的生力軍[J];建筑節(jié)能;2011年08期
5 張?chǎng)?應(yīng)啟戛,楊希明;管殼式換熱器動(dòng)態(tài)特性分析[J];江西能源;2001年01期
6 吳金星,王定標(biāo),魏新利,劉宏;管殼式換熱器殼程流動(dòng)和傳熱的數(shù)值模擬研究進(jìn)展[J];流體機(jī)械;2002年05期
7 郭鐵錚;劉國(guó)耀;劉德有;許昌;郭蘇;;腔式太陽(yáng)能水/蒸汽吸熱器給水全程控制系統(tǒng)的設(shè)計(jì)[J];電力與能源;2012年01期
8 趙敏;趙豫紅;周立芳;;太陽(yáng)能熱發(fā)電蓄熱系統(tǒng)的混雜建模與仿真[J];計(jì)算機(jī)與應(yīng)用化學(xué);2012年07期
9 趙智慧;劉立軍;;蒸汽蓄熱器運(yùn)行特性分析[J];青海電力;2011年04期
10 李顯;朱天宇;徐小韻;;1MW塔式太陽(yáng)能發(fā)電蓄熱系統(tǒng)熱力計(jì)算及分析[J];熱力發(fā)電;2009年11期
本文編號(hào):1568086
本文鏈接:http://sikaile.net/kejilunwen/dianlilw/1568086.html