納米改性復(fù)合液體硅橡膠電導(dǎo)率及直流擊穿特性研究
本文關(guān)鍵詞: 高壓直流 電纜附件 納米復(fù)合硅橡膠 電導(dǎo)率 直流擊穿場強(qiáng) 溫度 摻雜濃度 出處:《哈爾濱理工大學(xué)》2014年碩士論文 論文類型:學(xué)位論文
【摘要】:作為高壓直流輸電系統(tǒng)中不可或缺的一部分,高壓直流電纜在運(yùn)行中不僅要承受額定直流電壓,還需承受極性反轉(zhuǎn)電壓、雷電沖擊電壓和操作沖擊電壓的作用,而電纜附件更是由于其復(fù)雜的絕緣結(jié)構(gòu)和復(fù)合絕緣成為電纜絕緣中最為關(guān)鍵和薄弱的環(huán)節(jié)。為解決高壓直流下,電纜附件內(nèi)復(fù)合絕緣因電導(dǎo)率差異引起的電場分布不均問題,本文通過對附件絕緣液體硅橡膠(LSR)進(jìn)行納米改性,使其電導(dǎo)率在不同溫度和電場強(qiáng)度下均能與電纜本體絕緣交聯(lián)聚乙烯電導(dǎo)率良好匹配,實(shí)現(xiàn)電場分布的均化。 根據(jù)硅橡膠試樣的制備工藝流程,本文以雙組份加成型液體硅橡膠為基料,納米氧化鎂(MgO)和納米碳化硅(SiC)為改性填料,在實(shí)驗(yàn)室制備了不同摻雜濃度的納米復(fù)合液體硅橡膠試樣和純硅橡膠試樣。在此基礎(chǔ)上,分別對其電導(dǎo)率和直流擊穿強(qiáng)度進(jìn)行了測量與比較,并且研究分析了不同納米摻雜濃度、溫度和電場強(qiáng)度對電導(dǎo)率特性及直流擊穿特性的影響。最后,通過電場仿真分析,驗(yàn)證了納米改性前后復(fù)合液體硅橡膠下高壓直流電纜附件內(nèi)電場分布的均勻情況。 實(shí)驗(yàn)結(jié)果表明,與純液體硅橡膠相比,MgO/LSR納米復(fù)合材料的電導(dǎo)率幾乎沒變,而SiC/LSR納米復(fù)合材料的電導(dǎo)率有了明顯的改善提高。MgO/LSR納米復(fù)合材料的直流擊穿強(qiáng)度先緩慢下降后突然上升,而SiC/LSR納米復(fù)合材料先小幅上升后逐漸下降,與純硅橡膠相比,均差別大不。通過仿真結(jié)果發(fā)現(xiàn),納米復(fù)合氧化鎂/硅橡膠下的電纜附件內(nèi)電場分布依舊不均勻,而納米復(fù)合碳化硅/硅橡膠下的電纜附件內(nèi)電場分布相對均勻,表明納米氧化鎂的摻雜改性無法實(shí)現(xiàn)電纜附件內(nèi)的電場均化,而納米碳化硅的摻雜改性使得納米復(fù)合碳化硅/硅橡膠能與交聯(lián)聚乙烯電導(dǎo)率良好匹配,并且實(shí)現(xiàn)電纜附件內(nèi)的電場分布均化。
[Abstract]:As an indispensable part of HVDC transmission system, HVDC cable not only bears rated DC voltage, but also bears the effects of polarity reversal voltage, lightning impulse voltage and operating impulse voltage. Cable accessories are the most important and weak link in cable insulation because of their complex insulation structure and composite insulation. In order to solve the problem of uneven distribution of electric field caused by the difference of electrical conductivity in cable accessories under high voltage DC, In this paper, through the nano-modification of LSRs, the conductivity of LSRs can match well with the conductivities of XLPE at different temperature and electric field strength, and the electric field distribution can be homogenized. According to the technological process of preparation of silicone rubber sample, in this paper, two-component additive liquid silicone rubber was used as base material, and nano-MgO and sic _ 3 were used as the modified fillers. Nano-composite liquid silicone rubber samples with different doping concentrations and pure silicone rubber samples were prepared in laboratory. The electrical conductivity and DC breakdown strength were measured and compared respectively. The effects of different nanocrystalline doping concentration, temperature and electric field intensity on the conductivity and DC breakdown characteristics are studied. Finally, the electric field simulation analysis is carried out. The uniformity of electric field distribution in the attachment of HVDC cable before and after nano-modification was verified. The results show that the conductivity of MgO / LSR nanocomposites is almost the same as that of pure liquid silicone rubber. The electrical conductivity of SiC/LSR nanocomposites was improved obviously. The DC breakdown strength of MGO / LSR nanocomposites decreased slowly and then increased suddenly, while that of SiC/LSR nanocomposites increased slightly and then decreased gradually, compared with pure silicone rubber, the DC breakdown strength of MGO / LSR nanocomposites decreased gradually. The simulation results show that the electric field distribution in the cable accessory is still uneven, while the electric field distribution in the cable accessory under nano-composite silicon carbide / silicone rubber is relatively uniform. The results show that the doping modification of nano-MgO can not achieve the electric field homogenization in the cable accessory, while the doping modification of nano-silicon carbide can make the nano-composite sic / silicone rubber match well with the conductivity of crosslinked polyethylene. And the electric field distribution in the cable accessory is homogenized.
【學(xué)位授予單位】:哈爾濱理工大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2014
【分類號】:TM215.2
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 鄭飛虎;張冶文;肖春;;聚合物電介質(zhì)的擊穿與空間電荷的關(guān)系[J];材料科學(xué)與工程學(xué)報;2006年02期
2 周遠(yuǎn)翔;王寧華;王云杉;孫清華;梁曦東;關(guān)志成;;固體電介質(zhì)空間電荷研究進(jìn)展[J];電工技術(shù)學(xué)報;2008年09期
3 丁中民;李光范;李鵬;周文俊;;極性反轉(zhuǎn)時典型油紙復(fù)合絕緣的電場特性[J];電網(wǎng)技術(shù);2008年23期
4 劉英,曹曉瓏,孫淑霞;電纜終端型電場的應(yīng)力控制材料及結(jié)構(gòu)[J];電線電纜;2005年01期
5 王霞;何華琴;屠德民;;聚乙烯電纜料改性技術(shù)的研究進(jìn)展[J];電線電纜;2006年06期
6 王雅群;尹毅;李旭光;蔡川;;納米MgO摻雜聚乙烯中空間電荷行為的研究[J];電線電纜;2009年03期
7 陳慶國;張杰;高源;魏新勞;;混合電場作用下?lián)Q流變壓器閥側(cè)繞組電場分析[J];高電壓技術(shù);2008年03期
8 顧金;王俏華;尹毅;李旭光;;高壓直流XLPE電力電纜預(yù)制式接頭的設(shè)計[J];高電壓技術(shù);2009年12期
9 呂曉德,陳敦利;極性反轉(zhuǎn)時換流變壓器絕緣電場特性研究[J];高電壓技術(shù);1997年01期
10 張榮;徐操;聞飛;;高壓直流XLPE絕緣電纜附件設(shè)計[J];電線電纜;2012年06期
,本文編號:1548737
本文鏈接:http://sikaile.net/kejilunwen/dianlilw/1548737.html