輸電線路高阻接地故障檢測(cè)裝置的研究與設(shè)計(jì)
本文關(guān)鍵詞: 輸電線路 高阻接地 行波電流 Rogowski線圈 感應(yīng)取電 出處:《南昌大學(xué)》2015年碩士論文 論文類型:學(xué)位論文
【摘要】:輸電線路故障跳閘事故是電力系統(tǒng)最頻發(fā)的事故之一,威脅著電力系統(tǒng)的穩(wěn)定運(yùn)行,給系統(tǒng)供電可靠性帶來了極大的影響。目前,隨著智能電網(wǎng)的建設(shè)與發(fā)展,根據(jù)輸電線路故障行波電流特征,基于行波定位理論診斷出輸電線路故障位置和故障原因?qū)τ陔娏ο到y(tǒng)運(yùn)行維護(hù)及制定有效的搶修措施具有重要的意義。輸電線路發(fā)生高阻接地故障時(shí),由于閃絡(luò)回路的過渡電阻比較大,行波電流幅值衰減較快,使變電站內(nèi)繼電保護(hù)裝置難以檢測(cè)到行波電流波形,給故障診斷帶來了極大的難題,而高阻接地故障隱患不及時(shí)排除往往導(dǎo)致大面積范圍的長(zhǎng)時(shí)間停電事故;诖,在當(dāng)前國(guó)內(nèi)科研成果的基礎(chǔ)上,本文開展了輸電線路高阻接地故障檢測(cè)裝置的相關(guān)研究工作,應(yīng)用于輸電線路行波故障測(cè)距及故障診斷系統(tǒng),該舉措的實(shí)施將有效降低智能電網(wǎng)跳閘率、提高供電可靠性和減少運(yùn)行維護(hù)成本。本文的研究工作主要包含以下幾個(gè)方面:首先,介紹了行波傳輸?shù)幕纠碚摵透咦杞拥毓收系闹饕卣?對(duì)高阻接地故障行波特征進(jìn)行了仿真分析,研究高阻接地故障行波線上檢測(cè)的可行性。其次,分析了Rogowski線圈的工作原理,根據(jù)頻譜特性分析,設(shè)計(jì)了一種寬范圍且具備校正功能的Rogowski線圈,用于輸電線路高阻接地故障行波電流的檢測(cè)。接著,提出了輸電線路高阻接地故障檢測(cè)裝置的硬件總體設(shè)計(jì)方案,著重研究了增強(qiáng)感應(yīng)取能電源系統(tǒng)工作可靠性和降低最小啟動(dòng)電流的方法;根據(jù)行波數(shù)據(jù)量較大的特點(diǎn),創(chuàng)新性地設(shè)計(jì)了一種高可靠性數(shù)據(jù)通信冗余方案,可有效解決行波數(shù)據(jù)在傳輸過程中丟失的問題。最后,對(duì)本裝置掛網(wǎng)測(cè)試中采集到的樹閃類高阻接地故障行波電流的應(yīng)用做了進(jìn)一步分析。
[Abstract]:The fault tripping of transmission line is one of the most frequent accidents in power system, which threatens the stable operation of power system and has a great impact on the reliability of power supply. At present, with the construction and development of smart grid, According to the characteristics of traveling wave current of transmission line fault, It is of great significance to diagnose the fault location and cause of transmission line based on traveling wave location theory for power system operation and maintenance and to establish effective emergency repair measures. Because the transition resistance of the flashover circuit is relatively large and the amplitude of traveling wave current attenuates rapidly, it is difficult for the relay protection device in the substation to detect the traveling wave current waveform, which brings great difficulties to the fault diagnosis. However, if the hidden trouble of high resistance grounding fault is not eliminated in time, it will lead to a long time blackout accident in a large area. Based on this, based on the current domestic scientific research results, this paper has carried out the relevant research work of the transmission line high resistance grounding fault detection device. Applied to the traveling wave fault location and fault diagnosis system of transmission line, the implementation of this measure will effectively reduce the tripping rate of smart grid. The research work of this paper mainly includes the following aspects: firstly, the basic theory of traveling wave transmission and the main characteristics of high resistance grounding fault are introduced. The characteristics of traveling wave of high resistance grounding fault are simulated and analyzed, and the feasibility of detecting traveling wave line of high resistance ground fault is studied. Secondly, the working principle of Rogowski coil is analyzed, and the frequency spectrum characteristic is analyzed. A wide range of Rogowski coil with correction function is designed, which can be used to detect the traveling wave current of high resistance grounding fault of transmission line. Then, the overall hardware design scheme of high resistance grounding fault detection device for transmission line is proposed. The methods of enhancing the reliability of induction power supply system and reducing the minimum starting current are studied emphatically, and a high reliability data communication redundancy scheme is innovatively designed according to the characteristics of large traveling wave data. It can effectively solve the problem of the traveling wave data lost in the transmission process. Finally, the application of the tree-flicker high resistance earth fault traveling wave current collected in the test of the hanging network of this device is further analyzed.
【學(xué)位授予單位】:南昌大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類號(hào)】:TM75
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 李捷;苗世洪;劉沛;林湘寧;;基于分相有功功率差動(dòng)原理的線路高阻接地保護(hù)判據(jù)[J];電網(wǎng)技術(shù);2011年08期
2 陳佳佳;邰能靈;;檢測(cè)單相高阻接地故障的新方法及可靠性驗(yàn)證[J];水電能源科學(xué);2007年02期
3 田慶;原敏宏;王志平;;葛南直流線路高阻接地故障保護(hù)分析[J];電力系統(tǒng)及其自動(dòng)化學(xué)報(bào);2008年06期
4 王海明;;一起高阻接地故障的事故分析[J];廣東輸電與變電技術(shù);2007年06期
5 陳志峰;徐習(xí)東;徐亮;;變壓器分接頭改變對(duì)區(qū)內(nèi)單相高阻接地故障靈敏度的影響[J];繼電器;2006年13期
6 馬杰;李磊;李乃永;黃德斌;唐毅;朱倩茹;王安寧;;基于故障信息的高阻接地故障辨識(shí)與定位方法[J];電力系統(tǒng)保護(hù)與控制;2013年11期
7 牛艷利;;線路單相高阻接地故障保護(hù)裝置動(dòng)作分析[J];中小企業(yè)管理與科技(下旬刊);2013年10期
8 陳偉強(qiáng);;基于概率分析的高阻接地故障檢測(cè)新方法[J];電網(wǎng)與水力發(fā)電進(jìn)展;2007年05期
9 陳偉強(qiáng);;基于概率分析的高阻接地故障檢測(cè)新方法[J];湖北電力;2007年05期
10 陳偉強(qiáng);;基于概率分析的高阻接地故障檢測(cè)新方法[J];沈陽工程學(xué)院學(xué)報(bào)(自然科學(xué)版);2007年04期
相關(guān)會(huì)議論文 前2條
1 田慶;吳巾克;李建建;吳子良;李輝;;高壓直流線路高阻接地故障保護(hù)分析[A];中國(guó)高等學(xué)校電力系統(tǒng)及其自動(dòng)化專業(yè)第二十四屆學(xué)術(shù)年會(huì)論文集(上冊(cè))[C];2008年
2 賈磊;都洪基;戴光武;史志平;;人工神經(jīng)網(wǎng)絡(luò)在高阻接地故障中的應(yīng)用[A];中國(guó)高等學(xué)校電力系統(tǒng)及其自動(dòng)化專業(yè)第二十四屆學(xué)術(shù)年會(huì)論文集(中冊(cè))[C];2008年
相關(guān)碩士學(xué)位論文 前4條
1 高俠;輸電線路高阻接地故障檢測(cè)裝置的研究與設(shè)計(jì)[D];南昌大學(xué);2015年
2 賈磊;輸電線路高阻接地故障檢測(cè)研究[D];南京理工大學(xué);2009年
3 陳佳佳;輸電線路高阻接地故障檢測(cè)的新方法研究[D];上海交通大學(xué);2007年
4 劉艷敏;高壓輸電線路高阻接地故障檢測(cè)新方案研究[D];上海交通大學(xué);2009年
,本文編號(hào):1495371
本文鏈接:http://sikaile.net/kejilunwen/dianlilw/1495371.html