天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > 電力論文 >

銅基納米氧化物的可控制備及超級(jí)電容器性能研究

發(fā)布時(shí)間:2018-02-01 14:42

  本文關(guān)鍵詞: 超級(jí)電容器 氧化銅 復(fù)合材料 電化學(xué)性能 出處:《重慶大學(xué)》2014年碩士論文 論文類型:學(xué)位論文


【摘要】:化石能源的過度消耗帶來了嚴(yán)重的環(huán)境問題和能源危機(jī),為實(shí)現(xiàn)可持續(xù)發(fā)展能源的開發(fā)和有效利用,新能源和新型能源裝置的研究引起全世界研究者的廣泛關(guān)注。作為一種新型能量存儲(chǔ)裝置,超級(jí)電容器具有功率密度高、可逆性好、工作溫度范圍寬、可快速充放電而且循環(huán)壽命長(zhǎng)、無污染等優(yōu)點(diǎn),近年來得到了人們的廣泛關(guān)注。對(duì)于超極電容器來說,影響其電化學(xué)性能最關(guān)鍵的因素是電極材料,電極材料的優(yōu)劣直接決定著超級(jí)電容器的性能好壞。金屬氧化物由于具有高能量密度、高比電容和極好的可逆性,而被廣泛作為超級(jí)電容器電極材料。本文采用不同方法合成了不同形貌的CuO及CuO復(fù)合納米結(jié)構(gòu),并將其用于超級(jí)電容器電極材料的研究中。通過X射線衍射儀(XRD)、場(chǎng)發(fā)射掃描電鏡(FESEM)、透射電鏡(TEM)及比表面積測(cè)試儀(BET)分析了樣品的形貌特征、晶體結(jié)構(gòu)、比表面積和孔結(jié)構(gòu),并采用循環(huán)伏安、恒電流充放電和交流阻抗等測(cè)試方法對(duì)電極材料的電化學(xué)性能進(jìn)行了研究。其主要研究?jī)?nèi)容和結(jié)論如下: 以Cu(NO3)2·3H2O為銅源,四正辛基溴化銨(TOAB)為表面活性劑,氨水和NaOH為沉淀劑,通過常溫液相法合成了不同形貌的CuO納米結(jié)構(gòu),并考察了形貌對(duì)CuO電極材料的電化學(xué)性能影響,結(jié)果表明,CuO納米帶具有較好的電化學(xué)性能,其最高比電容為137F g-1,500次充放電循環(huán)后比容能仍能保持88.1%。 采用常溫液相法制備的CuO納米花作為基體,通過水熱法分別合成了花狀CuO/NiO和花狀CuO/MnO2的復(fù)合納米結(jié)構(gòu)。研究發(fā)現(xiàn),NiO和MnO2納米片都均勻的、緊密的覆蓋在花狀CuO的表面,顯著增加了復(fù)合材料的比表面積,從而提高了電極材料的電容性能。電化學(xué)性能顯示,花狀CuO/NiO和CuO/MnO2復(fù)合材料的比電容分別為280和167.2F g-1,明顯高于復(fù)合前花狀CuO的比電容(65Fg-1),而且復(fù)合材料具有良好的大倍率的充放電性能和優(yōu)異的循環(huán)穩(wěn)定性。 以低溫水浴法合成的Cu納米線為基體,與KMnO4水熱合成了CuO@MnO2的核殼納米結(jié)構(gòu)。三電極體系的電化學(xué)性能測(cè)試結(jié)果表明,在0.6Ag-1的電流密度下,CuO@MnO2核殼結(jié)構(gòu)納米管的比電容能達(dá)到276F g-1,經(jīng)過1000次循環(huán)充放電以后,比電容保留率為92.1%,顯示了良好的循環(huán)穩(wěn)定性。在兩電極的性能研究中,以CuO@MnO2核殼結(jié)構(gòu)作為正極,活化的微波剝離的氧化石墨烯(MEGO)為負(fù)極組裝成非對(duì)稱超級(jí)電容器元件,其最大的能量密度和功率密度分別能達(dá)到22.1Wh kg-1和85.6kW kg-1,顯示了其良好的應(yīng)用前景。 本論文中多種銅基氧化物自組裝結(jié)構(gòu)的合成思路和方法,為深入研究和開發(fā)新穎微觀結(jié)構(gòu)的銅基氧化物納米材料提供了可靠思路。同時(shí),制備的銅基納米自組裝納米結(jié)構(gòu)顯示了優(yōu)異的電化學(xué)性能,,是作為超級(jí)電容器電極材料的優(yōu)選材料。
[Abstract]:Excessive consumption of fossil energy has brought serious environmental problems and energy crisis, for the realization of sustainable development of energy development and effective use. As a new energy storage device, supercapacitors have high power density, good reversibility and wide working temperature range. The advantages of rapid charge and discharge, long cycle life, no pollution and so on, have been widely concerned in recent years. For superelectrode capacitors, the most important factor affecting their electrochemical performance is electrode materials. The performance of supercapacitors is directly determined by the quality of electrode materials. Metal oxides have high energy density, high specific capacitance and excellent reversibility. CuO and CuO nanostructures with different morphologies were synthesized by different methods. It has been used in the study of electrode materials for supercapacitors. The field emission scanning electron microscope (FESEM) was used to study the electrode materials of supercapacitors by using X-ray diffractometer (XRD) and field emission scanning electron microscopy (FESEM). The morphology, crystal structure, specific surface area and pore structure of the samples were analyzed by TEM and BET, and cyclic voltammetry was used. The electrochemical properties of electrode materials were studied by constant current charge-discharge and AC impedance measurements. The main contents and conclusions are as follows: Cu(NO3)2 路3H2O was used as copper source, tetraoctyl ammonium bromide (TOAB) as surfactant, ammonia and NaOH as precipitant. CuO nanostructures with different morphologies were synthesized by liquid phase method at room temperature. The effects of morphology on electrochemical properties of CuO electrode materials were investigated. The maximum specific capacitance is 137F g ~ (-1) F ~ (-1) F ~ (-1). After 500 cycles, the specific capacitance can still be maintained at 88.1g ~ (-1). The composite nanostructures of flower-like CuO/NiO and flower-like CuO/MnO2 were synthesized by hydrothermal method using CuO nano-flowers prepared by liquid phase method at room temperature. Both NiO and MnO2 nanoparticles are uniform and tightly covered on the surface of flower-like CuO, which significantly increases the specific surface area of the composite, thus improving the capacitance performance and electrochemical performance of the electrode material. The specific capacitance of flower-like CuO/NiO and CuO/MnO2 composites was 280 and 167.2 F g-1, respectively, which was significantly higher than that of pre-flowered CuO with specific capacitance of 65 Fg-1). Moreover, the composite has good charge-discharge performance and excellent cyclic stability. The core-shell nanostructures of CuO@MnO2 were synthesized by hydrothermal synthesis of CuO@MnO2 with Cu nanowires synthesized by low-temperature water bath method. The electrochemical properties of the three-electrode system were tested. The specific capacitance of CuOMnO2 core-shell nanotubes can reach 276F g-1 at the current density of 0.6Ag-1, after 1000 cycles. The specific capacitance retention rate is 92.1, which shows good cyclic stability. In the study of the performance of the two electrodes, the CuO@MnO2 core-shell structure is used as the positive electrode. Activated microwave stripping graphene oxide MEGO) is assembled into an asymmetric supercapacitor element for negative electrodes. The maximum energy density and power density can reach 22.1Wh kg-1 and 85.6kW kg-1respectively, which shows its good application prospect. In this paper, a variety of copper-based oxide self-assembly structure synthesis ideas and methods for the in-depth study and development of novel Cu-based oxide nanomaterials. At the same time. Copper based nano self-assembled nanostructures show excellent electrochemical properties and are used as electrode materials for supercapacitors.
【學(xué)位授予單位】:重慶大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2014
【分類號(hào)】:TB383.1;TM53

【參考文獻(xiàn)】

相關(guān)期刊論文 前10條

1 陳立泉;混合電動(dòng)車及其電池[J];電池;2000年03期

2 王然;苗小麗;;大功率超級(jí)電容器的發(fā)展與應(yīng)用[J];電池工業(yè);2008年03期

3 胡毅;陳軒恕;杜硯;尹婷;;超級(jí)電容器的應(yīng)用與發(fā)展[J];電力設(shè)備;2008年01期

4 張琦;王金全;;超級(jí)電容器及應(yīng)用探討[J];電氣技術(shù);2007年08期

5 王積森,楊金凱,鮑英,孫金全,張樹青;氧化銅納米粉體的制備新方法[J];中國(guó)粉體技術(shù);2003年04期

6 張?bào)K;金小娟;吳昱;張銘揚(yáng);;超級(jí)電容器用富氮炭電極材料制備及性能表征[J];電源技術(shù);2013年11期

7 崔寶臣,馬麗景,白守禮,杜俊岐;納米CuO的制備、表征及其應(yīng)用[J];化工進(jìn)展;2004年05期

8 李群;王寶和;夏良志;于才淵;;氧化銅納米粉體的制備工藝研究[J];河南化工;2012年13期

9 雷文;趙曉梅;何平;劉洪濤;;碳基超級(jí)電容器電極材料的研究進(jìn)展[J];化學(xué)通報(bào);2013年11期

10 馮輝霞;王濱;譚琳;雒和明;張德懿;;導(dǎo)電聚合物基超級(jí)電容器電極材料研究進(jìn)展[J];化工進(jìn)展;2014年03期

相關(guān)博士學(xué)位論文 前1條

1 孟繁慧;基于新型納米結(jié)構(gòu)超級(jí)電容器材料的研究[D];山東大學(xué);2013年



本文編號(hào):1482106

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/dianlilw/1482106.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶e4c02***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com