特高壓交流輸電線路繞擊耐雷性能及其防雷措施研究
本文關鍵詞: 特高壓 雷電繞擊 電氣幾何模型 ATP-EMTP 沖擊電暈 ANSYS 差異化防雷 出處:《西華大學》2014年碩士論文 論文類型:學位論文
【摘要】:特高壓電網(wǎng)具有輸電距離遠、送電容量大、線路損耗低、相對節(jié)省工程建設投資、減少土地使用面積等優(yōu)點,對我國電力資源的優(yōu)化配置和國民經濟可持續(xù)健康發(fā)展戰(zhàn)有特別重要的意義,然而其自身的特殊性也決定了運行過程中往往伴隨著各種問題,本文重點分析了1000kV特高壓電網(wǎng)的過電壓問題和線路周圍電場環(huán)境問題。運行經驗表明:超/特高壓交流輸電線路雷擊跳閘事故主要是由雷電繞擊相導線造成的。本文利用改進電氣幾何模型(EGM)分別對不同雷電流幅值、沿線地形地貌、地線保護角和導線工作電壓下輸電線路的繞擊耐雷性能做了定性分析,,還闡述線路絕緣水平、地面植被對繞擊的影響。最后,分別歸納總結了各影響因素下線路繞擊性能的一般規(guī)律。為了彌補EGM分析模型無法反映繞擊時,導線上雷電過電壓波的傳播過程的缺陷,又建立了一種既考慮地線上電暈和起暈導線間耦合作用,又考慮輸電線路與大地間電暈電容分布特點的多導線沖擊電暈模型,并運用電磁暫態(tài)計算軟件ATP-EMTP搭建了特高壓單回交流輸電線路繞擊仿真模型,通過仿真得到了計及沖擊電暈線路上雷電過電壓波的傳播特性;本文利用ANSYS有限元分析軟件分析了特高壓單回交流輸電線路正常運行時周圍電場環(huán)境,以及正常運行和存在雷電放電兩種情形下輸電線路表面電場強度分布狀況。仿真結果表明:特高壓單回交流輸電線路下方電場環(huán)境滿足國家相關標準的限值要求;雷電放電對地線表面場強分布影響很大,但對相導線的影響很有限,地線上極易產生上行先導。最后,在以上分析計算基礎上給出了特高壓單回交流輸電線路差異化防雷綜合治理措施的建議:即應采用“疏”和“堵”結合因地制宜的差異化綜合配置思路,有針對性地開展差異化繞擊防治工作,采取重點加強重要線路段和多雷區(qū)、強雷區(qū)及易繞擊閃絡段線路保護的策略,提高防雷的整體技術經濟性。
[Abstract]:UHV power grid has the advantages of long transmission distance, large transmission capacity, low line loss, relatively saving construction investment, reducing land use area and so on. It is of great significance for the optimal allocation of power resources and the sustainable and healthy development of the national economy. However, its particularity also determines the operation process is often accompanied by a variety of problems. In this paper, the overvoltage problem of 1000kV UHV network and the electric field environment around the transmission line are analyzed emphatically. The operation experience shows that:. The lightning tripping accident in UHV / UHV AC transmission lines is mainly caused by lightning wound phase conductors. EGM) for different lightning current amplitudes. The characteristics of lightning resistance of transmission line under ground protection angle and conductor voltage are analyzed qualitatively, and the influence of line insulation level and ground vegetation on wound failure is also discussed. In order to make up for the defects in the propagation process of lightning overvoltage wave on the conductor, the EGM analysis model can not reflect the propagation process of the lightning overvoltage wave under the influence of various factors, in order to compensate for the defects of the EGM analysis model can not reflect the propagation process of the lightning overvoltage wave. A multi-conductor impulse corona model considering the coupling between corona and corona conductor on ground wire and the characteristics of corona capacitance distribution between transmission line and earth is also established. The simulation model of EHV single circuit AC transmission line is built by using electromagnetic transient calculation software ATP-EMTP, and the propagation characteristics of lightning overvoltage wave on impulse corona line are obtained by simulation. In this paper, ANSYS finite element analysis software is used to analyze the electric field surrounding UHV single circuit AC transmission line when it is in normal operation. And the distribution of electric field intensity on the surface of transmission line under the condition of normal operation and lightning discharge. The simulation results show that:. The electric field environment under UHV single circuit AC transmission line meets the limit requirement of relevant national standards; Lightning discharge has a great influence on the distribution of field intensity on the surface of ground wire, but the influence on phase conductor is very limited. On the basis of the above analysis and calculation, the paper gives the suggestion of comprehensive measures for the differential lightning protection of UHV single circuit AC transmission lines: that is, we should adopt the "sparse" and "blocking" combined with local conditions of the differential comprehensive configuration thinking. In order to improve the overall technical and economic efficiency of lightning protection, the prevention and control work of differential wound strike is carried out, and the strategy of strengthening the line protection of important line sections and multiple mined areas, strong minefields and flashover sections is adopted to improve the overall technical and economic efficiency of lightning protection.
【學位授予單位】:西華大學
【學位級別】:碩士
【學位授予年份】:2014
【分類號】:TM863
【參考文獻】
相關期刊論文 前10條
1 李瑞芳;吳廣寧;曹曉斌;馬御棠;劉平;蘇杰;;雷電流幅值概率計算公式[J];電工技術學報;2011年04期
2 束洪春,司大軍,于繼來;雷擊輸電線路電磁暫態(tài)仿真[J];電力系統(tǒng)自動化;2005年17期
3 易輝;熊幼京;;1000kV交流特高壓輸電線路運行特性分析[J];電網(wǎng)技術;2006年15期
4 邵方殷;;1000kV特高壓輸電線路的電磁環(huán)境[J];電網(wǎng)技術;2007年22期
5 王東舉;周浩;陳稼苗;勞建明;朱天浩;包建強;張利庭;王堅敏;;特高桿塔的多波阻抗模型設計及雷擊暫態(tài)特性分析[J];電網(wǎng)技術;2007年23期
6 彭謙;李軍;卞鵬;康東升;單志祥;;改進電氣幾何模型法在1000kV輸電線路雷電繞擊跳閘率計算中的應用[J];電網(wǎng)技術;2010年09期
7 杜穎;;超/特高壓輸電線路耐雷性能計算方法探討[J];廣東輸電與變電技術;2010年06期
8 賈磊;舒亮;鄭士普;謝鵬;孫冬慧;施圍;;計及工頻電壓的輸電線路耐雷水平的研究[J];高電壓技術;2006年11期
9 陳家宏;王海濤;馮萬興;童雪芳;李曉嵐;;1000kV線路走廊的雷電參數(shù)及易閃線段分析[J];高電壓技術;2006年12期
10 李曉嵐;杜忠東;;1000kV特高壓輸電線路防繞擊問題的探討[J];高電壓技術;2006年12期
相關博士學位論文 前3條
1 王曉燕;特高壓交流輸電線路電磁環(huán)境研究[D];山東大學;2011年
2 伏進;特高壓直流輸電線路耐雷性能分析方法研究[D];重慶大學;2009年
3 李瑞芳;雷電活動及地形地貌對輸電線路繞擊特性的影響研究[D];西南交通大學;2012年
本文編號:1470270
本文鏈接:http://sikaile.net/kejilunwen/dianlilw/1470270.html