基于相位群同步的高精度頻率鏈接技術(shù)研究
發(fā)布時間:2018-01-22 05:41
本文關(guān)鍵詞: 原子鐘 頻率鏈接 相位群同步 相位群處理 出處:《西安電子科技大學》2014年碩士論文 論文類型:學位論文
【摘要】:本文提出了周期性現(xiàn)象間相位變化的規(guī)律性,提出了相位群同步、相位量子等物理特性,深化了有關(guān)最大公因子頻率、等效鑒相頻率等概念的理論。并把這些新的理論概念應(yīng)用到原子鐘中,與傳統(tǒng)處理方法相比簡化和改進了原子鐘的線路部分,并且將原子頻標性能得到提高,產(chǎn)生了基于周期性信號間相位群同步和相位群處理方法的高精度頻率鏈接技術(shù)。本文根據(jù)周期信號之間的相位關(guān)系變化規(guī)律,基于相位群同步的理論知識和相位群處理的方法,通過比對兩個壓控晶體振蕩器輸出信號的相位差,即時間間隔,經(jīng)過反饋和數(shù)據(jù)結(jié)果處理后對其中輸出頻標信號的壓控晶體振蕩器進行鎖相控制,從而達到高精度頻率鏈接的目的。這種頻率鏈接技術(shù)簡化且改進了傳統(tǒng)原子頻標結(jié)構(gòu)中的線路部分,使得倍頻與頻率合成線路、反饋及控制電路實現(xiàn)了簡單且集成化,不僅減小了傳統(tǒng)頻率歸一化方法中頻率變換電路所帶來的相位噪聲,而且明顯地提高了原子鐘輸出信號的性能,使原子頻標的輸出有好的準確度和長期穩(wěn)定度指標,同時保持了壓控晶振本身好的短期穩(wěn)定度和相位噪聲指標,達到了頻率高精度鏈接的技術(shù)目的。銫原子鐘具有最高的準確度和良好的穩(wěn)定度,主要用于衛(wèi)星導(dǎo)航的應(yīng)用。氫原子鐘具有最高的穩(wěn)定度,目前處于研究和擴展應(yīng)用的階段。銣原子鐘的優(yōu)勢在于體積小,主要用于商用。經(jīng)過對比,本論文原子物理部分選用銫原子,經(jīng)過頻率鏈接技術(shù)后輸出10MHz的頻標信號。本論文所設(shè)計的銫原子鐘硬件電路主要分為四個部分:信號整形模塊,是對線路中兩個受控振蕩器輸出的頻率信號經(jīng)過放大、濾波、施密特觸發(fā)器后輸出脈沖信號;CPLD分頻模塊,是對10MHz的受控振蕩器10000000分頻后輸出1Hz的信號;時差測量模塊,是對分頻后的1Hz頻率信號和14.591479MHz頻率信號進行相位比對,讀出它們在每個最小公倍數(shù)周期1s內(nèi)的時間間隔;MCU模塊,對時差測量芯片的控制和對10MHz壓控振蕩器的控制。其中,對受控振蕩器進行分頻部分是利用Quartus Ⅱ軟件用Verilog語言對CPLD在線編程進行測試,實現(xiàn)了計數(shù)器分頻的功能。利用IAR軟件對MSP430F169單片機編程進行調(diào)試,實現(xiàn)了對時差測量單元以及受控振蕩器的控制,達到了頻率鏈接電路對壓控振蕩器進行電壓控制的目的。通過軟、硬件的結(jié)合,銫原子鐘電路經(jīng)過改造后,輸出的頻標信號長期穩(wěn)定度達到10E-13/天,短期穩(wěn)定度達到5E-12/s,遠端相位噪聲達到-162dBc/Hz@1MHz。原子頻標有廣泛的應(yīng)用,在計量領(lǐng)域可以作為頻率計量和守時、時間同步和時間計量,在工程技術(shù)領(lǐng)域可以運用到導(dǎo)航與定位、數(shù)字通信等方面。
[Abstract]:In this paper, the regularity of phase variation among periodic phenomena is presented, and the physical properties of phase group synchronization and phase quantum are presented, which deepen the frequency of the most common factor. These new concepts are applied to atomic clock. Compared with the traditional processing method, the circuit part of atomic clock is simplified and improved, and the performance of atomic frequency standard is improved. A high-precision frequency link technique based on phase group synchronization and phase group processing between periodic signals is presented in this paper according to the variation of phase relationship between periodic signals. Based on the theoretical knowledge of phase group synchronization and the method of phase group processing, the phase difference of the output signals of two VCO is compared, that is, the time interval. After feedback and data processing, the voltage-controlled crystal oscillator which outputs the frequency standard signal is controlled by phase-locking. In order to achieve the goal of high precision frequency link, this frequency link technology simplifies and improves the circuit part of the traditional atomic frequency standard structure, which makes the frequency doubling and frequency synthesizing circuit. The feedback and control circuit is simple and integrated, which not only reduces the phase noise caused by the frequency conversion circuit in the traditional frequency normalization method, but also improves the performance of the atomic clock output signal. The atomic frequency standard output has good accuracy and long-term stability index, while maintaining the voltage control crystal oscillator itself good short-term stability and phase noise index. Cesium atomic clock has the highest accuracy and good stability, which is mainly used in satellite navigation. Hydrogen atomic clock has the highest stability. The advantage of rubidium atomic clock is that it is small in size and mainly used for commercial use. By comparison, cesium atom is selected in the atomic physics part of this paper. The frequency standard signal of 10MHz is output after frequency link technology. The hardware circuit of cesium atomic clock designed in this paper is mainly divided into four parts: signal shaping module. The output frequency signal of the two controlled oscillators in the circuit is amplified, filtered and output pulse signal after Schmitt flip-flop. The CPLD frequency division module is used to output 1 Hz signal after 10000000 frequency division of the controlled oscillator of 10 MHz. The time difference measurement module is used to compare the frequency signals of 1Hz and 14.591479MHz, and read out their time intervals within 1s of each minimum common multiple period. The MCU module controls the time difference measurement chip and the 10MHz voltage-controlled oscillator. In the part of frequency division of controlled oscillator, CPLD on-line programming is tested by Quartus 鈪,
本文編號:1453848
本文鏈接:http://sikaile.net/kejilunwen/dianlilw/1453848.html
最近更新
教材專著