基于RMC的海上風(fēng)電并聯(lián)多端高壓直流輸電研究
本文關(guān)鍵詞:基于RMC的海上風(fēng)電并聯(lián)多端高壓直流輸電研究 出處:《湘潭大學(xué)》2014年碩士論文 論文類型:學(xué)位論文
更多相關(guān)文章: 精簡矩陣變換器 雙極性電壓空間矢量調(diào)制 多端高壓直流輸電 超級(jí)電容器 低電壓穿越
【摘要】:海上風(fēng)電場資源豐富、環(huán)境污染少、風(fēng)速穩(wěn)定、低湍流、風(fēng)切變小,近年來已成為世界各國可再生能源發(fā)展領(lǐng)域的焦點(diǎn)。對(duì)于遠(yuǎn)距離海上風(fēng)電能量傳輸,采用高壓直流傳輸方式要比交流傳輸更經(jīng)濟(jì)、更可靠和更穩(wěn)定,海上風(fēng)電高壓直流傳輸是未來風(fēng)力發(fā)電及其能量傳輸?shù)闹匾l(fā)展方向。隨著海上風(fēng)電場裝機(jī)容量的不斷加大,受傳輸距離、維護(hù)成本等因素的影響,加上風(fēng)電機(jī)組選址困難、適用于換流站建設(shè)的空間有限,這就需要換流器有盡量小的體積,便于安裝,較輕的重量,便于海上運(yùn)輸。另外考慮到海上環(huán)境的復(fù)雜型,海上風(fēng)電場需要換流器具有更高的可靠性。 精簡矩陣變換器是一種新型能量轉(zhuǎn)換器,英文全稱為reduced matrixconverter,簡稱為RMC。它具有結(jié)構(gòu)緊湊、控制自由度大、輸入/輸出性能優(yōu)良等特點(diǎn)。由RMC構(gòu)成的換流器具有轉(zhuǎn)換級(jí)數(shù)少、高功率密度、高可靠性和高效率等優(yōu)點(diǎn),是海上風(fēng)電-HVDC系統(tǒng)中一種頗具潛力的換流器。近年來各國學(xué)者在RMC換流器的調(diào)制策略、換流技術(shù)、損耗分析以及在海上風(fēng)電-HVDC系統(tǒng)中應(yīng)用等方面展開研究,取得了一定的研究進(jìn)展。但基于RMC的海上風(fēng)電-HVDC系統(tǒng)以雙端口拓?fù)錇橹,,?duì)于其控制策略的研究也只是對(duì)其中的一個(gè)端口進(jìn)行研究(海上RMC換流器端口或者岸上并網(wǎng)換流器端口)。未對(duì)RMC-HVDC系統(tǒng)各種工況和電網(wǎng)故障情況下系統(tǒng)協(xié)調(diào)控制做出深入分析。 文章對(duì)RMC換流器的拓?fù)浣Y(jié)構(gòu)進(jìn)行了分析,介紹了電流型和電壓型RMC換流器各自的特點(diǎn),深入分析了RMC雙極性電壓空間矢量調(diào)制策略,建立了基于RMC的海上風(fēng)電并聯(lián)多端高壓直流輸電系統(tǒng),提出了相應(yīng)的控制策略,通過對(duì)RMC換流器的控制實(shí)現(xiàn)了最大風(fēng)能捕獲,HVDC岸上逆變器對(duì)并網(wǎng)有功功率和無功功率實(shí)現(xiàn)了解耦控制。針對(duì)電網(wǎng)電壓跌落時(shí)引起的HVDC系統(tǒng)有功功率傳輸不平衡問題,利用超級(jí)電容器的快速充放電能力,提出了超級(jí)電容器儲(chǔ)能端口雙向DC-DC變換器的控制策略,DC-DC變換器根據(jù)直流電壓變化實(shí)時(shí)對(duì)超級(jí)電容進(jìn)行充電,使HVDC系統(tǒng)傳輸?shù)挠泄β蔬_(dá)到動(dòng)態(tài)平衡,有效提高了海上風(fēng)電-HVDC系統(tǒng)的低電壓穿越能力,增強(qiáng)了系統(tǒng)的可靠性和穩(wěn)定性。通過仿真驗(yàn)證了所提控制策略的正確性和有效性。
[Abstract]:Offshore wind farms are rich in resources, less environmental pollution, stable wind speed, low turbulence, small wind shear, in recent years has become the focus of renewable energy development in the world. Using HVDC transmission mode is more economical, more reliable and more stable than AC transmission. High voltage DC transmission of offshore wind power is an important development direction of wind power generation and its energy transmission in the future. With the increasing installed capacity of offshore wind farm, it is affected by transmission distance, maintenance cost and other factors. In addition, the location of wind turbine units is difficult, and the space for converter station construction is limited, which requires the converter to have as small a volume as possible, easy to install, lighter weight. In addition, considering the complexity of marine environment, offshore wind farm requires a higher reliability of converters. Reduced matrix converter (RMC) is a new type of energy converter, which is called reduced matrix converter (RMC). It has compact structure and large control degree of freedom. The converter composed of RMC has the advantages of less conversion series, high power density, high reliability and high efficiency. It is a potential converter in offshore wind power HVDC system. In recent years, many scholars in the world in the RMC converter modulation strategy, commutation technology. Some research progress has been made in loss analysis and application in offshore wind power HVDC system, but the offshore wind power HVDC system based on RMC is based on dual-port topology. The study of control strategy is only one of the ports (offshore RMC converter port or shore grid-connected converter port). The coordinated control of RMC-HVDC system under various operating conditions and power network failures is not analyzed in depth. In this paper, the topology of RMC converter is analyzed, the characteristics of current mode and voltage type RMC converter are introduced, and the RMC bipolar voltage space vector modulation strategy is deeply analyzed. A parallel multi-terminal HVDC transmission system for offshore wind power based on RMC is established, and the corresponding control strategy is proposed. The maximum wind power capture is realized by controlling the RMC converter. The HVDC shore inverter realizes decoupling control of active power and reactive power in grid-connected system. Aiming at the unbalanced transmission of active power in HVDC system caused by voltage drop of power grid. The control strategy of bi-directional DC-DC converter for supercapacitor energy storage port is proposed by using the fast charge-discharge capability of supercapacitor. According to the DC voltage change, the DC-DC converter charges the super capacitor in real time, which makes the active power transmission of the HVDC system achieve dynamic balance. The low voltage traversing ability of offshore wind power HVDC system is improved effectively, and the reliability and stability of the system are enhanced. The correctness and effectiveness of the proposed control strategy are verified by simulation.
【學(xué)位授予單位】:湘潭大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2014
【分類號(hào)】:TM614;TM721.1
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 文鋒;姜久春;郭慧萍;;基于矩陣變換器的AC/DC變換器[J];電工技術(shù)學(xué)報(bào);2009年03期
2 張坤;毛承雄;陸繼明;王丹;黃輝;;基于儲(chǔ)能的直驅(qū)風(fēng)力發(fā)電系統(tǒng)的功率控制[J];電工技術(shù)學(xué)報(bào);2011年07期
3 傅曉帆;周克亮;程明;;近海風(fēng)電場并網(wǎng)用多端口VSC-HVDC系統(tǒng)的無差拍協(xié)同控制策略[J];電工技術(shù)學(xué)報(bào);2011年07期
4 侯世英;房勇;曾建興;殷忠寧;;應(yīng)用超級(jí)電容提高風(fēng)電系統(tǒng)低電壓穿越能力[J];電機(jī)與控制學(xué)報(bào);2010年05期
5 曾雨竹;蔡家利;張仲超;;基于AC/AC變換理論的感應(yīng)加熱電源研究[J];電力電子技術(shù);2008年03期
6 袁旭峰;程時(shí)杰;文勁宇;;基于CSC和VSC的混合多端直流輸電系統(tǒng)及其仿真[J];電力系統(tǒng)自動(dòng)化;2006年20期
7 胡書舉;李建林;許洪華;;永磁直驅(qū)風(fēng)電系統(tǒng)低電壓運(yùn)行特性的分析[J];電力系統(tǒng)自動(dòng)化;2007年17期
8 姚駿;廖勇;莊凱;;永磁直驅(qū)風(fēng)電機(jī)組的雙PWM變換器協(xié)調(diào)控制策略[J];電力系統(tǒng)自動(dòng)化;2008年20期
9 畢大強(qiáng);葛寶明;王文亮;柴建云;;基于釩電池儲(chǔ)能系統(tǒng)的風(fēng)電場并網(wǎng)功率控制[J];電力系統(tǒng)自動(dòng)化;2010年13期
10 楊曉萍;郭鑫;;直驅(qū)式永磁風(fēng)力發(fā)電機(jī)組并網(wǎng)控制[J];電力系統(tǒng)及其自動(dòng)化學(xué)報(bào);2011年06期
相關(guān)博士學(xué)位論文 前1條
1 許愛國;城市軌道交通再生制動(dòng)能量利用技術(shù)研究[D];南京航空航天大學(xué);2009年
本文編號(hào):1435993
本文鏈接:http://sikaile.net/kejilunwen/dianlilw/1435993.html