基于自適應(yīng)粒子群算法的主動配電網(wǎng)日前有功調(diào)度
本文關(guān)鍵詞:基于自適應(yīng)粒子群算法的主動配電網(wǎng)日前有功調(diào)度 出處:《南方電網(wǎng)技術(shù)》2015年11期 論文類型:期刊論文
更多相關(guān)文章: 主動配電網(wǎng) 分布式能源 日前有功調(diào)度 粒子群算法
【摘要】:在主動配電網(wǎng)背景下,將可調(diào)度分布式發(fā)電(distributed generation,DG)、不可調(diào)度DG、儲能單元和基于可中斷負荷的需求側(cè)響應(yīng)等多種類型的分布式能源(distributed energy resources,DERs)納入主動配電網(wǎng)管理調(diào)度中,以DERs日前24 h有功出力為優(yōu)化變量,以一天內(nèi)配電公司的運行成本最低為目標函數(shù),建立了日前有功調(diào)度模型,采用自適應(yīng)粒子群算法對所提出的模型進行求解。針對改進后的IEEE 33節(jié)點配電系統(tǒng)進行了仿真,結(jié)果表明對于各類DERs進行綜合調(diào)度優(yōu)化不僅能夠滿足配電網(wǎng)供電質(zhì)量要求,而且能夠有效管理和消納分布式能源,為配電企業(yè)帶來最佳的經(jīng)濟效益。
[Abstract]:In active distribution network background, will be scheduling of distributed generation (distributed generation, DG), not scheduling DG, storage unit based on distributed energy and interruptible load demand side response and other types (distributed energy, resources, DERs) into the active distribution network management, with DERs 24 h active contribute to the optimization of variables, with the lowest operation cost in a day distribution company as objective function, is established before the active scheduling model, using adaptive particle swarm optimization algorithm to solve the proposed model. The improved IEEE 33 node distribution system is simulated. The results show that for all kinds of DERs integrated scheduling optimization can not only to meet the power quality of the distribution network, but also can effectively manage and consumptive distributed energy, bring the best economic benefits for distribution enterprises.
【作者單位】: 中國電力科學(xué)研究院;中國農(nóng)業(yè)大學(xué)信息與電氣工程學(xué)院;
【基金】:國家電網(wǎng)公司科技項目(PD71-13-031)~~
【分類號】:TM73
【正文快照】: 0引言近年來,分布式能源接入配電網(wǎng)的規(guī)模逐步擴大。分布式能源的基本構(gòu)成是分布式電源、儲能和可控負荷等,其中分布式電源主要有光伏發(fā)電、風(fēng)力發(fā)電以及微型燃氣輪機等。由于配電網(wǎng)自身自動化水平不高、調(diào)度方式落后等問題,配電網(wǎng)對DG的消納能力受到嚴重制約;此外,分布式發(fā)電
【相似文獻】
相關(guān)期刊論文 前10條
1 全芙蓉;;粒子群算法的理論分析與研究[J];硅谷;2010年23期
2 吳軍;李為吉;;改進的粒子群算法及在結(jié)構(gòu)優(yōu)化中的應(yīng)用[J];陜西理工學(xué)院學(xué)報(自然科學(xué)版);2006年04期
3 段海濤;劉永忠;馮霄;;水系統(tǒng)優(yōu)化的粒子群算法分析[J];華北電力大學(xué)學(xué)報(自然科學(xué)版);2007年02期
4 王偉;;混合粒子群算法及其優(yōu)化效率評價[J];中國水運(學(xué)術(shù)版);2007年06期
5 付宜利;封海波;孫建勛;李榮;馬玉林;;機電產(chǎn)品管路自動敷設(shè)的粒子群算法[J];機械工程學(xué)報;2007年11期
6 蔣榮華;王厚軍;龍兵;;基于離散粒子群算法的測試選擇[J];電子測量與儀器學(xué)報;2008年02期
7 周苗;陳義保;劉加光;;一種新的協(xié)同多目標粒子群算法[J];山東理工大學(xué)學(xué)報(自然科學(xué)版);2008年05期
8 姚峰;楊衛(wèi)東;張明;;改進粒子群算法及其在熱連軋負荷分配中的應(yīng)用[J];北京科技大學(xué)學(xué)報;2009年08期
9 張大興;賈建援;張愛梅;郭永獻;;基于粒子群算法的三軸跟瞄裝置跟蹤策略研究[J];儀器儀表學(xué)報;2009年09期
10 王麗萍;江波;邱飛岳;;基于決策偏好的多目標粒子群算法及其應(yīng)用[J];計算機集成制造系統(tǒng);2010年01期
相關(guān)會議論文 前10條
1 朱童;李小凡;魯明文;;位置加權(quán)的改進粒子群算法[A];中國科學(xué)院地質(zhì)與地球物理研究所第11屆(2011年度)學(xué)術(shù)年會論文集(上)[C];2012年
2 陳定;何炳發(fā);;一種新的二進制粒子群算法在稀疏陣列綜合中的應(yīng)用[A];2009年全國天線年會論文集(上)[C];2009年
3 陳龍祥;蔡國平;;基于粒子群算法的時滯動力學(xué)系統(tǒng)的時滯辨識[A];第十二屆全國非線性振動暨第九屆全國非線性動力學(xué)和運動穩(wěn)定性學(xué)術(shù)會議論文集[C];2009年
4 于穎;李永生;於孝春;;新型離散粒子群算法在波紋管優(yōu)化設(shè)計中的應(yīng)用[A];第十一屆全國膨脹節(jié)學(xué)術(shù)會議膨脹節(jié)設(shè)計、制造和應(yīng)用技術(shù)論文選集[C];2010年
5 劉卓倩;顧幸生;;一種基于信息熵的改進粒子群算法[A];系統(tǒng)仿真技術(shù)及其應(yīng)用(第7卷)——'2005系統(tǒng)仿真技術(shù)及其應(yīng)用學(xué)術(shù)交流會論文選編[C];2005年
6 熊偉麗;徐保國;;粒子群算法在支持向量機參數(shù)選擇優(yōu)化中的應(yīng)用研究[A];2007中國控制與決策學(xué)術(shù)年會論文集[C];2007年
7 方衛(wèi)華;徐蘭玉;陳允平;;改進粒子群算法在大壩力學(xué)參數(shù)分區(qū)反演中的應(yīng)用[A];2012年中國水力發(fā)電工程學(xué)會大壩安全監(jiān)測專委會年會暨學(xué)術(shù)交流會論文集[C];2012年
8 熊偉麗;徐保國;;單個粒子收斂中心隨機攝動的粒子群算法[A];2009年中國智能自動化會議論文集(第七分冊)[南京理工大學(xué)學(xué)報(增刊)][C];2009年
9 馬向陽;陳琦;;以粒子群算法求解買賣雙方存貨主從對策[A];第十二屆中國管理科學(xué)學(xué)術(shù)年會論文集[C];2010年
10 趙磊;;基于粒子群算法求解多目標函數(shù)優(yōu)化問題[A];第二十一屆中國(天津)’2007IT、網(wǎng)絡(luò)、信息技術(shù)、電子、儀器儀表創(chuàng)新學(xué)術(shù)會議論文集[C];2007年
相關(guān)博士學(xué)位論文 前10條
1 王芳;粒子群算法的研究[D];西南大學(xué);2006年
2 安鎮(zhèn)宙;家庭粒子群算法及其奇偶性與收斂性分析[D];云南大學(xué);2012年
3 劉建華;粒子群算法的基本理論及其改進研究[D];中南大學(xué);2009年
4 黃平;粒子群算法改進及其在電力系統(tǒng)的應(yīng)用[D];華南理工大學(xué);2012年
5 胡成玉;面向動態(tài)環(huán)境的粒子群算法研究[D];華中科技大學(xué);2010年
6 張靜;基于混合離散粒子群算法的柔性作業(yè)車間調(diào)度問題研究[D];浙江工業(yè)大學(xué);2014年
7 張寶;粒子群算法及其在衛(wèi)星艙布局中的應(yīng)用研究[D];大連理工大學(xué);2007年
8 劉宏達;粒子群算法的研究及其在船舶工程中的應(yīng)用[D];哈爾濱工程大學(xué);2008年
9 楊輕云;約束滿足問題與調(diào)度問題中離散粒子群算法研究[D];吉林大學(xué);2006年
10 馮琳;改進多目標粒子群算法的研究及其在電弧爐供電曲線優(yōu)化中的應(yīng)用[D];東北大學(xué);2013年
相關(guān)碩士學(xué)位論文 前10條
1 張忠偉;結(jié)構(gòu)優(yōu)化中粒子群算法的研究與應(yīng)用[D];大連理工大學(xué);2009年
2 李強;基于改進粒子群算法的艾薩爐配料優(yōu)化[D];昆明理工大學(xué);2015年
3 付曉艷;基于粒子群算法的自調(diào)節(jié)隸屬函數(shù)模糊控制器設(shè)計[D];河北聯(lián)合大學(xué);2014年
4 余漢森;粒子群算法的自適應(yīng)變異研究[D];南京信息工程大學(xué);2015年
5 梁計鋒;基于改進粒子群算法的交通控制算法研究[D];長安大學(xué);2015年
6 楊偉;基于粒子群算法的氧樂果合成過程建模研究[D];鄭州大學(xué);2015年
7 李程;基于粒子群算法的AS/RS優(yōu)化調(diào)度方法研究[D];陜西科技大學(xué);2015年
8 樊偉健;基于混合混沌粒子群算法求解變循環(huán)發(fā)動機數(shù)學(xué)模型問題[D];山東大學(xué);2015年
9 陳百霞;考慮風(fēng)電場并網(wǎng)的電力系統(tǒng)無功優(yōu)化[D];山東大學(xué);2015年
10 戴玉倩;基于混合動態(tài)粒子群算法的軟件測試數(shù)據(jù)自動生成研究[D];江西理工大學(xué);2015年
,本文編號:1425069
本文鏈接:http://sikaile.net/kejilunwen/dianlilw/1425069.html