有機(jī)太陽(yáng)能電池給體材料設(shè)計(jì)合成與器件優(yōu)化研究
本文關(guān)鍵詞:有機(jī)太陽(yáng)能電池給體材料設(shè)計(jì)合成與器件優(yōu)化研究 出處:《南開大學(xué)》2014年博士論文 論文類型:學(xué)位論文
更多相關(guān)文章: 小分子給體 有機(jī)太陽(yáng)能電池 能量轉(zhuǎn)化效率 電子傳輸層 翻轉(zhuǎn)結(jié)構(gòu)器件
【摘要】:本論文設(shè)計(jì)并合成了一系列新型有機(jī)太陽(yáng)能電池的給體材料,并對(duì)它們的熱穩(wěn)定性、吸收光譜、電化學(xué)性能和固態(tài)堆積狀態(tài)進(jìn)行了測(cè)試,同時(shí)詳細(xì)研究了它們作為電子給體材料在有機(jī)太陽(yáng)能電池中的光電轉(zhuǎn)換性能。為了進(jìn)一步提高有機(jī)小分子太陽(yáng)能電池的能量轉(zhuǎn)換效率,我們將研究重點(diǎn)轉(zhuǎn)移至器件優(yōu)化和機(jī)理研究。首先使用各種不同的電子傳輸層,將DR3TBDT作為給體材料的小分子太陽(yáng)能電池的能量轉(zhuǎn)換效率提高至8.32%。然后通過制備并優(yōu)化翻轉(zhuǎn)結(jié)構(gòu)的器件,將以DRCN7T作為給體材料的翻轉(zhuǎn)結(jié)構(gòu)小分子太陽(yáng)能電池的能量轉(zhuǎn)換效率提高至8.84%。在上面的合成及器件優(yōu)化過程中,我們對(duì)光電轉(zhuǎn)換機(jī)理和器件壽命進(jìn)行了初步的研究。最后我們基于本組在過去四年中理論計(jì)算方面的結(jié)果,對(duì)分子結(jié)構(gòu)設(shè)計(jì)和性能預(yù)測(cè)提出了一些觀點(diǎn)和看法。具體各部分內(nèi)容摘要如下: 一、設(shè)計(jì)并合成了兩個(gè)具有相同骨架但側(cè)鏈不同的異硫茚(ITN)和苯并雙噻吩(BDT)的新型醌式交替共聚物PBDT-DEAITN和PBDT-DOAITN,并研究了它們的光電轉(zhuǎn)換性能。這兩個(gè)聚合物有非常窄的光學(xué)帶隙,分別為1.52和1.58eV。將它們與PC61BM共混后制備的器件,在標(biāo)準(zhǔn)太陽(yáng)光下的能量轉(zhuǎn)換效率分別是1.25%和1.20%。通過薄膜X射線衍射和原子力顯微鏡測(cè)試觀察到這兩個(gè)聚合物在固體狀態(tài)下堆積較差,同時(shí)用空間電荷限制電流測(cè)試得到兩個(gè)聚合物都有較低的遷移率;通過理論計(jì)算優(yōu)化對(duì)應(yīng)聚合物單體的結(jié)構(gòu),發(fā)現(xiàn)PBDT-DEAITN和PBDT-DOAITN中相鄰異硫茚和苯并雙噻吩單元之間的二面角分別高達(dá)33.66°和34.35°,較大的二面角會(huì)導(dǎo)致較差的堆積和低的遷移率,進(jìn)而導(dǎo)致低的能量轉(zhuǎn)換效率。通過理論計(jì)算的二面角和偶極矩結(jié)果分析,發(fā)現(xiàn)給體材料具有平面性骨架有利于得到更高的光電轉(zhuǎn)換性能;诖,分子的平面性成為本組設(shè)計(jì)給體分子的重要參考依據(jù)。 二、為了獲得更高的開路電壓,我們?cè)O(shè)計(jì)并合成了三個(gè)帶有不同端基的寡聚五噻吩衍生物DCAO5T,DERHD5T和DIN5T,并將這三個(gè)給體分子分別與富勒烯衍生物進(jìn)行共混制備有機(jī)太陽(yáng)能電池器件,測(cè)試了其在標(biāo)準(zhǔn)太陽(yáng)光下的光電轉(zhuǎn)換性能。其中,基于DERHD5T的器件獲得了1.08V的開路電壓和4.63%的能量轉(zhuǎn)換效率,這是有機(jī)太陽(yáng)能電池中為數(shù)不多的開路電壓可以超過1V的給體材料。同時(shí)DCAO5T和DIN5T分別獲得了3.27%和4.00%的能量轉(zhuǎn)換效率,開路電壓分別為0.88V和0.78V。通過理論模擬研究了高開路電壓的原因,發(fā)現(xiàn)DERHD5T與PC61BM之間的電子偶合能力最弱,從而降低了器件的反向飽和電流密度,使得開路電壓有一定的提高,理論預(yù)測(cè)的開路電壓和實(shí)驗(yàn)的結(jié)果趨勢(shì)一致。上述結(jié)果證明,除了通過降低給體HOMO能級(jí)(或者提高受體材料的LUMO能級(jí))來(lái)提高器件開路電壓外,削弱給體與受體之間的電子偶合也是非常重要的途徑。 三、為了提高有機(jī)太陽(yáng)能電池的能量轉(zhuǎn)換效率,制備了基于DR3TBDT:PC71BM作為活性層的小分子太陽(yáng)能電池,分別使用聚芴衍生物(PFN)、氧化鋅納米顆粒和氟化鋰作為電子傳輸層,得到的能量轉(zhuǎn)換效率分別為8.32%、7.30%和7.38%。其中,基于PFN的能量轉(zhuǎn)換效率是目前基于苯并雙噻吩體系小分子太陽(yáng)能電池的最高效率。論文詳細(xì)研究了引入不同的電子傳輸層對(duì)器件性能影響的原因,發(fā)現(xiàn)引入PFN后,能量轉(zhuǎn)換效率明顯提高的原因是減少了器件中的雙分子復(fù)合,同時(shí)增加了活性層的有效吸光。 四、在上述器件優(yōu)化工作的基礎(chǔ)上,我們制備了基于DRCN7T:PC71BM作為活性層的翻轉(zhuǎn)結(jié)構(gòu)小分子太陽(yáng)能電池,在標(biāo)準(zhǔn)太陽(yáng)光照射下,器件的能量轉(zhuǎn)換效率為8.84%,對(duì)應(yīng)的開路電壓為0.91V,短路電流密度為14.28mA cm-2,填充因子為0.68,這也是目前基于翻轉(zhuǎn)結(jié)構(gòu)小分子太陽(yáng)能電池的世界紀(jì)錄。在相同條件下制備的正常結(jié)構(gòu)器件,開路電壓和填充因子沒有明顯變化,能量轉(zhuǎn)換效率為8.06%,短路電流密度為13.07mA cm-2.通過變光強(qiáng)實(shí)驗(yàn)證實(shí)了正常結(jié)構(gòu)和翻轉(zhuǎn)結(jié)構(gòu)器件中,電荷的復(fù)合機(jī)制基本接近,因此后者短路電流密度增加的原因主要是增加了活性層的有效吸光,這也與光學(xué)模擬的結(jié)果一致。經(jīng)過封裝后,制備的翻轉(zhuǎn)結(jié)構(gòu)器件在空氣中存放103天后,器件的能量轉(zhuǎn)換效率仍然在8%以上,顯示了小分子太陽(yáng)能電池具有良好的發(fā)展前景。 五、本章比較了各種泛函和基組在光電功能材料預(yù)測(cè)方面的優(yōu)點(diǎn)與缺點(diǎn),發(fā)現(xiàn)B3LYP/6-31G*和PBE1PBE/6-31G*基本可以滿足有機(jī)半導(dǎo)體的結(jié)構(gòu)優(yōu)化、HOMO能級(jí)、吸收光譜和電荷傳輸重組能等參數(shù)的預(yù)測(cè)。尤其是PBE1PBE/6-31G*的結(jié)果與實(shí)驗(yàn)結(jié)果吻合的較好;贛arcus電子轉(zhuǎn)移方程,我們將理論計(jì)算得到的給體空穴重組能與對(duì)應(yīng)器件能量轉(zhuǎn)換效率進(jìn)行關(guān)聯(lián),發(fā)現(xiàn)給體分子的空穴重組能越小,越有利于給體與受體界面的激子分離和給體中空穴的傳輸與收集,進(jìn)而得到更高的能量轉(zhuǎn)換效率。這對(duì)以后的光電分子設(shè)計(jì)具有重大的指導(dǎo)意義。
[Abstract]:This paper designed and synthesized a series of novel organic solar cell material, and the thermal stability of their absorption spectra, electrochemical properties and solid state accumulation were tested, and studied them as a photoelectric conversion electron donor material in organic solar cell performance. In order to further improve the energy conversion efficiency of organic small molecular solar cells, we will study the focus to the device optimization and mechanism research. First, using a variety of different electron transport layer, DR3TBDT as the energy conversion efficiency was improved to 8.32%. for small molecule solar cell materials and devices through the preparation and optimization of flip structure, with DRCN7T as synthesis and device the optimization process to the turnover structure of small molecule material solar energy conversion efficiency was improved to 8.84%. in the above, we on the photoelectric The mechanism of conversion and the lifetime of devices have been preliminarily studied. Finally, based on the results of theoretical calculations in the past four years, we put forward some viewpoints and opinions on molecular structure design and performance prediction.
A design, and two have the same skeleton but isothianaphthene different side chains were synthesized (ITN) and benzo (BDT) thiophene double novel quinone alternating copolymer PBDT-DEAITN and PBDT-DOAITN, and studied their photoelectric conversion properties. These two polymers have very narrow optical band gap, respectively 1.52 and they will be 1.58eV. and PC61BM in the blends prepared in the standard device, the sun's light energy conversion efficiency were 1.25% and 1.20%. thin films by X ray diffraction and atomic force microscopy observed the two polymer poor accumulation in the solid state, at the same time with the space charge limited current test two polymers have migration low rate; through theoretical calculation and optimization structure of the corresponding polymer monomer, PBDT-DEAITN and PBDT-DOAITN found that the dihedral angle between adjacent isothianaphthene and benzo bithiophene units were as high as 33.66 degrees and 34.35 degrees, The larger dihedral angle will lead to poor accumulation and low mobility, which leads to low energy conversion efficiency. Through the theoretical calculation and analysis of the dihedral angle and the dipole moment results, found that donor materials with planar skeleton to obtain higher photoelectric conversion performance. Based on this, the plane of the divided sub group to design an important reference molecule.
Two, in order to obtain a higher open circuit voltage, we design and three different end groups with oligomeric five thiophene derivatives synthesized by DCAO5T, DERHD5T and DIN5T, and the three donor molecules respectively and fullerene derivatives were prepared by blending organic solar cell device, the photoelectric conversion in the standard sun performance test. The DERHD5T device based on 1.08V was obtained in the open circuit voltage and energy conversion efficiency of 4.63%, which is the organic solar cell open circuit voltage for a few more than 1V to the bulk material. The energy conversion efficiency at DCAO5T and DIN5T respectively won the 3.27% and 4%, respectively 0.88V and 0.78V. open circuit voltage study on the causes of high open circuit voltage through theoretical simulation, found between DERHD5T and PC61BM of the electronic coupling weakest, thereby reducing the device reverse saturation current density, the open circuit voltage is To some extent, the results of theoretical and experimental prediction of open circuit voltage of the same trend. The results show that, except by reducing the donor HOMO level (or increase the LUMO level of receptor materials) to improve the device open circuit voltage, weaken the way to electronic coupling between the donor and acceptor is also very important.
Three, in order to improve the energy conversion efficiency of organic solar cells, DR3TBDT:PC71BM were prepared as small molecular solar cells based on the active layer, respectively using polyfluorene derivatives (PFN), Zinc Oxide nano particles and lithium fluoride as an electron transport layer, the energy conversion efficiency were 8.32%, 7.30% and 7.38%., PFN energy conversion efficiency is the highest efficiency based on benzo bithiophene system of small molecular solar cells based on the reasons. This paper made a detailed research into the influence of different electron transport layer on the device performance, found that after the introduction of PFN, significantly improve the efficiency of energy conversion reason is to reduce the double molecular devices in the composite, while increasing the effective absorption activity layer.
Four, based on the optimization of the device, we prepared the turnover structure of small molecular solar cells DRCN7T:PC71BM as active layer based on the standard in the sunlight, the energy conversion efficiency of the device is 8.84%, the open circuit voltage corresponding to the 0.91V, the short-circuit current density was 14.28mA cm-2, the fill factor of 0.68 and the is currently the turnover structure of small molecular solar cells based on the world record. The normal structure of devices prepared under the same conditions, the open circuit voltage and the fill factor did not change significantly, the energy conversion efficiency of 8.06%, short circuit current density of 13.07mA cm-2. by changing the light intensity experiment confirmed the normal structure and turning structure device, the basic mechanism of composite charge close, so the reason for the latter to increase the short circuit current density is mainly to increase the effective absorption of the active layer, this also with the optical simulation results. After packaged, The energy conversion efficiency of the device is still more than 8% after storing for 103 days in air, showing that the small molecule solar cell has good prospects for development.
Five, this chapter compares the various functionals and basis sets in photoelectric materials forecast the advantages and disadvantages of B3LYP/6-31G* and PBE1PBE/6-31G* can meet the basic structure optimization, organic semiconductor HOMO level, prediction of absorption and charge transfer reorganization energy and other parameters. Especially the PBE1PBE/6-31G* results and the experimental results agree well with the Marcus. Based on the equation of electron transfer, we will give the calculated body hole reorganization energy and corresponding device energy conversion efficiency of the association, found that recombinant molecules can hole smaller, more conducive to the exciton separation donor and acceptor interface and to transmit and collect in the hole, and then get the higher energy conversion efficiency. Is of great significance to the photoelectric molecular design in the future.
【學(xué)位授予單位】:南開大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2014
【分類號(hào)】:TM914.4
【共引文獻(xiàn)】
相關(guān)期刊論文 前10條
1 傅楊武;陳明君;;D-A型共軛低聚物的電子性質(zhì)及D-A比對(duì)其影響的理論研究[J];高等學(xué);瘜W(xué)學(xué)報(bào);2013年02期
2 王英杰;劉梅怡;高加力;;生物大分子全量子力學(xué)方法:顯性極化(X-Pol)模型[J];分子科學(xué)學(xué)報(bào);2013年06期
3 胡雪花;李福山;吳朝興;郭太良;;基底溫度對(duì)噴涂技術(shù)制備大面積有機(jī)太陽(yáng)能電池性能的影響[J];發(fā)光學(xué)報(bào);2013年12期
4 Liwei Wang;Feiyao Qing;Yeping Sun;Xiaoyu Li;Haiqiao Wang;;Synthesis and Photovoltaic Properties of Poly(5,6-bis(octyloxy)-4,7- di(thiophen-2-yl)benzo-[c][1,2,5]-thiadiazole-9,9-dioctylfuorene)[J];Journal of Materials Science & Technology;2013年12期
5 王亮;孫建平;李針英;周小波;王茜;羅聯(lián)源;凌啟淡;;1,4-二酮吡咯并吡咯在聚合物太陽(yáng)能電池的應(yīng)用[J];高分子通報(bào);2014年04期
6 齊磊;張春梅;陳強(qiáng);;Properties of Plasma Enhanced Chemical Vapor Deposition Barrier Coatings and Encapsulated Polymer Solar Cells[J];Plasma Science and Technology;2014年01期
7 駱樂;向衛(wèi)東;謝翠萍;鐘家松;梁曉娟;鄒軍;呂春燕;;量子點(diǎn)-聚合物納米復(fù)合材料的研究進(jìn)展[J];材料導(dǎo)報(bào);2013年21期
8 楊東杰;伍曉蕾;昌婭琪;邱學(xué)青;陶家媛;;磺甲基化木質(zhì)素的辣根過氧化物酶催化聚合研究[J];高分子學(xué)報(bào);2014年04期
9 李暢;章婷;薛唯;;溶劑預(yù)處理結(jié)合熱退火提升聚噻吩結(jié)晶度及其光伏性能[J];發(fā)光學(xué)報(bào);2014年02期
10 王麗輝;殷倫祥;張昱;李艷芹;;苯并噻二唑?yàn)橹行牡腁-π-A-π-A型小分子光伏材料合成與性能研究[J];大連理工大學(xué)學(xué)報(bào);2014年02期
相關(guān)會(huì)議論文 前10條
1 周合江;征甲甲;張波;虞梅芳;高興發(fā);陳春英;衛(wèi)濤濤;;The Inhibition of Migration and Invasion of Breast Cancer Cells by Pristine Graphene via the Impairment of Mitochondrial Respiration[A];第十一屆全國(guó)博士生學(xué)術(shù)年會(huì)(生物醫(yī)藥專題)論文集(下冊(cè),墻報(bào)P25-P48)[C];2013年
2 曹鏞;吳宏濱;黃飛;陳軍武;;聚合物異質(zhì)結(jié)太陽(yáng)電池-進(jìn)展與展望(摘要)[A];“廣東省光學(xué)學(xué)會(huì)2013年學(xué)術(shù)交流大會(huì)”暨“粵港臺(tái)光學(xué)界產(chǎn)學(xué)研合作交流大會(huì)”會(huì)議手冊(cè)論文集[C];2013年
3 薛啟帆;胡志誠(chéng);孫辰;陳梓銘;黃飛;葉軒立;曹鏞;;鈣鈦礦/聚合物(添加劑)復(fù)合薄膜的平面異質(zhì)結(jié)雜化太陽(yáng)電池[A];中國(guó)化學(xué)會(huì)第29屆學(xué)術(shù)年會(huì)摘要集——第25分會(huì):有機(jī)光伏[C];2014年
4 左易;萬(wàn)相見;陳永勝;;熱退火對(duì)小分子有機(jī)光伏電池性能的影響[A];中國(guó)化學(xué)會(huì)第29屆學(xué)術(shù)年會(huì)摘要集——第25分會(huì):有機(jī)光伏[C];2014年
5 黃紅艷;傅妮娜;劉書利;李勸;趙保敏;黃維;;基于S-和N-雜環(huán)小分子材料的合成、表征[A];中國(guó)化學(xué)會(huì)第29屆學(xué)術(shù)年會(huì)摘要集——第16分會(huì):π-共軛材料[C];2014年
6 陳立桅;;能源納米器件中的材料與界面研究[A];中國(guó)化學(xué)會(huì)第29屆學(xué)術(shù)年會(huì)摘要集——第37分會(huì):能源納米科學(xué)與技術(shù)[C];2014年
7 路勝利;胡桂林;李國(guó)能;張邦虎;;原位電化學(xué)聚合雜化太陽(yáng)能電池光伏性能研究[A];能源高效清潔利用及新能源技術(shù)——2012動(dòng)力工程青年學(xué)術(shù)論壇論文集[C];2013年
8 Cheng-Xing Cui;Ya-Jun Liu;;A thorough understanding of reactivity of the bonds In C_(60) and C_(70) based on the M06-2X computation[A];中國(guó)化學(xué)會(huì)第十二屆全國(guó)量子化學(xué)會(huì)議論文摘要集[C];2014年
9 Ren Feng;Jia jia Song;Ji-Jun Zou;Xiangwen Zhang;Li Wang;;Theoretical Study on Cyclopropanation of endo-Dicyclopentadiene with Zinc Carbenoids[A];中國(guó)化學(xué)會(huì)第十二屆全國(guó)量子化學(xué)會(huì)議論文摘要集[C];2014年
10 陳立桅;;能源納米器件中的材料和界面研究[A];第十三屆固態(tài)化學(xué)與無(wú)機(jī)合成學(xué)術(shù)會(huì)議論文摘要集[C];2014年
相關(guān)博士學(xué)位論文 前10條
1 王建;過渡金屬銥、釕、錸配合物激發(fā)態(tài)性質(zhì)及其相關(guān)應(yīng)用的理論研究[D];吉林大學(xué);2011年
2 慈成剛;疊氮化氰和幾種羰基化合物光解離機(jī)理的理論研究[D];吉林大學(xué);2011年
3 閔春剛;生物多色熒光的起源及機(jī)理研究[D];吉林大學(xué);2011年
4 孫文明;碳納米材料與生物小分子間相互作用及保護(hù)機(jī)理的理論研究[D];山東大學(xué);2011年
5 趙強(qiáng);若干鹵鍵相互作用的理論研究[D];山東大學(xué);2011年
6 魏帆;鈾化合物激發(fā)態(tài)和熱力學(xué)性質(zhì)的相對(duì)論量子化學(xué)研究[D];清華大學(xué);2010年
7 李昕;光電功能銥配合物的密度泛函理論研究[D];華東理工大學(xué);2011年
8 耿允;基于噻吩類和萘類材料的電荷傳輸性能的理論研究[D];東北師范大學(xué);2011年
9 李鴻志;提高密度泛函理論計(jì)算Y-NO體系均裂能精度:神經(jīng)網(wǎng)絡(luò)和支持向量機(jī)方法[D];東北師范大學(xué);2011年
10 盧楠;雙功能有機(jī)小分子催化不對(duì)稱合成反應(yīng)的理論研究[D];山東師范大學(xué);2012年
相關(guān)碩士學(xué)位論文 前10條
1 侯聰;丙酸乙脂與羥基自由基的反應(yīng)機(jī)理的理論研究[D];吉林大學(xué);2011年
2 周靜;羥基引發(fā)的多溴代聯(lián)苯醚大氣光降解機(jī)理和動(dòng)力學(xué)的量子化學(xué)研究[D];大連理工大學(xué);2011年
3 閆文艷;星型分子結(jié)構(gòu)與電荷轉(zhuǎn)移特征的密度泛函理論研究[D];東北師范大學(xué);2011年
4 鄧?yán)淼?理論研究共軛聚合物的結(jié)構(gòu)和電子性質(zhì)及有機(jī)導(dǎo)體和有機(jī)太陽(yáng)能電池材料的分子模擬[D];西南大學(xué);2012年
5 韓冰;分子篩孔道限域效應(yīng)的量子化學(xué)計(jì)算研究[D];中國(guó)科學(xué)院研究生院(武漢物理與數(shù)學(xué)研究所);2012年
6 徐亮;銠鎳催化的C-H活化反應(yīng)機(jī)理的理論研究[D];溫州大學(xué);2012年
7 陶委;四吡咯衍生物光敏染料光譜性質(zhì)的密度泛函理論研究[D];東北師范大學(xué);2012年
8 張一超;面向DNA/RNA化學(xué)修飾的結(jié)構(gòu)生物信息學(xué)研究[D];上海交通大學(xué);2013年
9 傅志強(qiáng);P450酶活性中心催化轉(zhuǎn)化全氟辛烷磺酸(PFOS)前體化合物的機(jī)理研究[D];大連理工大學(xué);2013年
10 張明星;生物分子及MOFs材料氫鍵激發(fā)態(tài)的理論研究[D];大連理工大學(xué);2013年
,本文編號(hào):1421581
本文鏈接:http://sikaile.net/kejilunwen/dianlilw/1421581.html