基于混合儲(chǔ)能的光伏并網(wǎng)功率平抑控制研究
本文關(guān)鍵詞:基于混合儲(chǔ)能的光伏并網(wǎng)功率平抑控制研究 出處:《山東大學(xué)》2014年碩士論文 論文類型:學(xué)位論文
更多相關(guān)文章: 光伏并網(wǎng) 混合儲(chǔ)能 功率平抑 最大功率點(diǎn)追蹤 空間矢量調(diào)制
【摘要】:隨著化石燃料的日益減少,可再生能源發(fā)電發(fā)展迅猛,但隨之而來的缺陷也暴露無遺。在眾多可再生能源中,太陽能的使用范圍非常廣泛。但光伏發(fā)電由于受日照強(qiáng)度、溫度等的影響,會(huì)產(chǎn)生較大波動(dòng)的功率,所以在大規(guī)模并網(wǎng)技術(shù)中仍存在些許問題。本文針對(duì)光伏發(fā)電因光照強(qiáng)度與溫度變化而導(dǎo)致的發(fā)電功率波動(dòng)問題,提出一種儲(chǔ)能型光伏并網(wǎng)發(fā)電系統(tǒng),以抑制并網(wǎng)功率的波動(dòng)。以光伏發(fā)電最大功率跟蹤和并網(wǎng)逆變控制為基礎(chǔ),引入蓄電池和超級(jí)電容器組成的混合儲(chǔ)能系統(tǒng),實(shí)現(xiàn)對(duì)光伏發(fā)電功率削峰填谷、達(dá)到平抑功率的效果。 首先,本文以單級(jí)式光伏并網(wǎng)逆變系統(tǒng)的綜合控制策略為研究對(duì)象,對(duì)光伏陣列數(shù)學(xué)模型、最大功率點(diǎn)跟蹤方法、單級(jí)式光伏并網(wǎng)系統(tǒng)拓?fù)浣Y(jié)構(gòu)及其數(shù)學(xué)模型等問題進(jìn)行了系統(tǒng)深入的研究。并提出了一種變步長(zhǎng)的最大功率點(diǎn)追蹤(MPPT)算法,與定步長(zhǎng)的MPPT算法相比,響應(yīng)速度更快,尋優(yōu)過程更精確,能夠更好地避免因?qū)ふ易畲蠊β庶c(diǎn)而產(chǎn)生的系統(tǒng)振蕩。本文針對(duì)光伏并網(wǎng)逆變系統(tǒng)的控制策略,提出了采用空間矢量調(diào)制(SVPWM)的方法產(chǎn)生觸發(fā)信號(hào),充分利用該方法的諧波含量低、直流電壓利用率高等優(yōu)勢(shì),最終確定基于SVPWM控制的單級(jí)式光伏并網(wǎng)系統(tǒng)的綜合控制策略。 其次,本文通過比較各種儲(chǔ)能技術(shù)的優(yōu)缺點(diǎn),選擇了將超級(jí)電容器和蓄電池組成混合儲(chǔ)能系統(tǒng),并提出了將混合儲(chǔ)能應(yīng)用于獨(dú)立光伏發(fā)電系統(tǒng),以優(yōu)化蓄電池的充放電過程。混合儲(chǔ)能系統(tǒng)連接方式有三種,本文采用了一種有源并聯(lián)方式,即通過功率變換器并聯(lián)。為了實(shí)現(xiàn)儲(chǔ)能系統(tǒng)平抑光伏輸出功率波動(dòng)的目標(biāo),并提高蓄電池使用壽命,本文采用了一種將并聯(lián)控制器與充電控制器統(tǒng)一進(jìn)行控制設(shè)計(jì)的方法;綜合考慮獨(dú)立光伏系統(tǒng)的容量及外界天氣變化影響等因素,針對(duì)混合儲(chǔ)能系統(tǒng)中的超級(jí)電容器和蓄電池兩種儲(chǔ)能元件進(jìn)行容量設(shè)計(jì),并給出了不同情況下的最優(yōu)設(shè)計(jì)方法;最終對(duì)提出的混合儲(chǔ)能系統(tǒng)的控制策略進(jìn)行了仿真分析和實(shí)驗(yàn)驗(yàn)證。 最后,提出了將超級(jí)電容器和蓄電池組成的混合儲(chǔ)能系統(tǒng)應(yīng)用于大規(guī)模光伏并網(wǎng)系統(tǒng)之中,并確立了基于雙向DC-DC變換器的混合儲(chǔ)能系統(tǒng)的控制策略。對(duì)雙向DC-DC變換器設(shè)計(jì)了不同的工作模式,以改變其功率流向,實(shí)現(xiàn)超級(jí)電容器與蓄電池的功率流通。本文選題依托于中電普瑞科技有限公司的10kW光伏儲(chǔ)能系統(tǒng)并網(wǎng)示范工程,在本文的最后,介紹了該系統(tǒng)組成設(shè)備的各項(xiàng)參數(shù)、控制策略及監(jiān)控系統(tǒng)等內(nèi)容,并通過實(shí)際工程數(shù)據(jù)驗(yàn)證了混合儲(chǔ)能平抑光伏功率波動(dòng)的正確性。
[Abstract]:With the decrease of fossil fuels, renewable energy power generation is developing rapidly, but the following defects are also exposed. In many renewable energy sources. The use of solar energy is very wide, but photovoltaic power generation will have a large fluctuation of power due to the influence of sunshine intensity and temperature. Therefore, there are still some problems in large-scale grid-connected technology. In this paper, a kind of energy storage photovoltaic grid-connected generation system is proposed to deal with the fluctuation of generation power caused by the change of light intensity and temperature. In order to restrain the fluctuation of grid-connected power, based on the maximum power tracking and grid-connected inverter control of photovoltaic generation, a hybrid energy storage system composed of batteries and supercapacitors is introduced to realize peak and valley reduction of photovoltaic power. Achieve the effect of stabilizing power. Firstly, the integrated control strategy of single-stage photovoltaic grid-connected inverter system is studied in this paper. The mathematical model of photovoltaic array and the maximum power point tracking method are studied. The topology and mathematical model of single-stage photovoltaic grid-connected system are studied in detail, and a variable step maximum power point tracking (MPPTT) algorithm is proposed. Compared with the fixed-step MPPT algorithm, the response speed is faster and the optimization process is more accurate. The system oscillation caused by finding the maximum power point can be avoided better. Aiming at the control strategy of photovoltaic grid-connected inverter system, the space vector modulation (SVPWM) method is proposed to generate the trigger signal. Based on the advantages of low harmonic content and high DC voltage utilization, the integrated control strategy of single-stage photovoltaic grid-connected system based on SVPWM control is finally determined. Secondly, by comparing the advantages and disadvantages of various energy storage technologies, a hybrid energy storage system composed of supercapacitors and batteries is selected, and a hybrid energy storage system is proposed for independent photovoltaic power generation systems. In order to optimize the charging and discharging process of the battery, there are three connection modes of the hybrid energy storage system. In this paper, an active shunt mode is used. In order to achieve the goal of suppressing the fluctuation of photovoltaic output power of the energy storage system and to improve the battery service life, the power converter is connected in parallel. In this paper, a control design method of parallel controller and charging controller is adopted. Considering the capacity of the independent photovoltaic system and the influence of the external weather, the capacity of the supercapacitor and the storage battery in the hybrid energy storage system is designed. The optimal design method under different conditions is also given. Finally, the proposed control strategy of hybrid energy storage system is simulated and verified by experiments. Finally, the hybrid energy storage system composed of supercapacitor and battery is applied to large-scale photovoltaic grid-connected system. The control strategy of hybrid energy storage system based on bi-directional DC-DC converter is established. Different operation modes are designed to change the power flow direction of the bi-directional DC-DC converter. Realize the power flow between supercapacitor and battery. This paper is based on the 10kW photovoltaic energy storage system demonstration project of CLP Prey Technology Co., Ltd., at the end of this paper. The parameters, control strategy and monitoring system of the system are introduced, and the correctness of the hybrid energy storage to suppress the photovoltaic power fluctuation is verified by the actual engineering data.
【學(xué)位授予單位】:山東大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2014
【分類號(hào)】:TM615
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 雷元超,陳春根,沈駿,黃躍杰,陳國(guó)呈;光伏電源最大功率點(diǎn)跟蹤控制方法研究[J];電工電能新技術(shù);2004年03期
2 葉滿園;官二勇;宋平崗;;以電導(dǎo)增量法實(shí)現(xiàn)MPPT的單級(jí)光伏并網(wǎng)逆變器[J];電力電子技術(shù);2006年02期
3 魯鴻毅;何奔騰;;超級(jí)電容器在微型電網(wǎng)中的應(yīng)用[J];電力系統(tǒng)自動(dòng)化;2009年02期
4 趙爭(zhēng)鳴;雷一;賀凡波;魯宗相;田琦;;大容量并網(wǎng)光伏電站技術(shù)綜述[J];電力系統(tǒng)自動(dòng)化;2011年12期
5 彭思敏;曹云峰;蔡旭;;大型蓄電池儲(chǔ)能系統(tǒng)接入微電網(wǎng)方式及控制策略[J];電力系統(tǒng)自動(dòng)化;2011年16期
6 張步涵;曾杰;毛承雄;金玉潔;王云玲;;電池儲(chǔ)能系統(tǒng)在改善并網(wǎng)風(fēng)電場(chǎng)電能質(zhì)量和穩(wěn)定性中的應(yīng)用[J];電網(wǎng)技術(shù);2006年15期
7 崔艷華,孟凡明;釩電池儲(chǔ)能系統(tǒng)的發(fā)展現(xiàn)狀及其應(yīng)用前景[J];電源技術(shù);2005年11期
8 唐西勝;齊智平;;超級(jí)電容器蓄電池混合電源[J];電源技術(shù);2006年11期
9 唐渝;趙莉華;;光伏發(fā)電的最大功率點(diǎn)跟蹤控制[J];電源世界;2010年06期
10 吳鳴;蘇劍;余杰;劉海濤;楊碧峰;信誠(chéng);季宇;;分布式電源的混合儲(chǔ)能配置分析與研究[J];供用電;2013年01期
,本文編號(hào):1417002
本文鏈接:http://sikaile.net/kejilunwen/dianlilw/1417002.html