基于參數(shù)化建模的風力機葉片結構分析及優(yōu)化設計
發(fā)布時間:2018-01-13 01:13
本文關鍵詞:基于參數(shù)化建模的風力機葉片結構分析及優(yōu)化設計 出處:《重慶大學》2014年碩士論文 論文類型:學位論文
更多相關文章: 風力機葉片 極限載荷 參數(shù)化模型 性能校核 結構優(yōu)化
【摘要】:近年來,“能源危機”對人類的影響越發(fā)凸顯,可再生能源由此得到快速發(fā)展。風能,作為一種可再生的“綠色能源”已席卷全球,,被世界各國予以極大的關注與重視,都把運用風能作為能源短缺的突破口。中國作為能源消費大國,政府亦大力支持風電行業(yè)的發(fā)展,但由于中國風電起步較晚且國外把風電核心技術作為企業(yè)最高機密,中國風電因此大大落后于風電發(fā)達國家,大型風電設備,尤其是風機葉片主要依靠進口。而風機葉片由于其直接捕獲風能,良好的氣動性能、較高的質量保證是風機穩(wěn)定運行的前提。本文提出了“基于參數(shù)化建模的風力機葉片結構分析及優(yōu)化設計”的研究課題。本文根據(jù)某一現(xiàn)有風力機葉片,重點對其氣動性能,結構分析及優(yōu)化設計進行了研究,取得了如下成果: ①風機葉片氣動載荷模型基于葉素-動量理論建立,其中考慮葉尖損失修正模型的影響,更加精確的確定軸向誘導因子和周向誘導因子;贕L2010標準,分析了風力機所受到的各種載荷如:重力載荷、離心力載荷及空氣動力載荷等,研究了風力機工作的載荷工況和設計工況,通過BLADED建立了風力機整機模型,其包括葉片、翼型、葉輪、塔架、動力傳動鏈、機艙和控制等模塊,通過計算得到風機在各種工況下的截面載荷分布,從中篩選出截面載荷最大極端工況,從而得到葉片各截面處的極限載荷,其為葉片后續(xù)結構分析及優(yōu)化奠定基礎。 ②在全面探究了葉片結構及鋪層方式的基礎上,提出了葉片弦長、扭角和相對厚度的集成表達,通過葉片三維形狀參數(shù)表達式得到葉片空間三維坐標,由MATLAB編程并結合ANSYS二次開發(fā)由底至頂建立了葉片參數(shù)化幾何模型,根據(jù)葉片鋪層材料及鋪層方式全面建立了葉片有限元力學模型,通過計算葉片質量及重心位置且與實驗結果比較驗證了該模型建立的可靠性。 ③通過葉片模態(tài)分析得到葉片低階固有頻率及振型,其與實驗結果相差不大,分析了該葉片在正常運行過程中是否發(fā)生共振現(xiàn)象。由于葉片由復合材料構成,而復合材料表現(xiàn)出各向異性,且葉片主要由翼面、葉根、主梁和腹板等關鍵部位組成,各部位材料及鋪設方式不同,因此在校核葉片強度時應根據(jù)需要分別校核上述部位。葉片剛度尤為重要,其表明葉片受力變形后是否與塔架發(fā)生碰撞。 ④提出以材料厚度,葉片結構參數(shù)作為優(yōu)化變量,葉片質量作為優(yōu)化目標,在保證葉片強度和葉尖位移的前提下建立了葉片結構優(yōu)化的數(shù)學模型,通過MATLAB并結合ANSYS編程,運用改進的粒子群算法進行尋優(yōu),經(jīng)數(shù)次迭代后得到既滿足性能要求,質量又較輕的葉片。該研究對葉片結構的優(yōu)化及改造具有重要的現(xiàn)實指導意義,并為葉片的氣動、結構一體化設計提供可能。
[Abstract]:In recent years, the impact of "energy crisis" on human beings has become more and more prominent, and renewable energy has been rapidly developed. Wind energy, as a renewable "green energy", has swept the world. By the world to pay great attention and attention to the use of wind energy as a breakthrough. China as a large country of energy consumption, the government also vigorously support the development of wind power industry. However, due to the late start of wind power in China and the core technology of wind power as the top secret of enterprises abroad, wind power in China lags far behind the developed countries and large-scale wind power equipment. Especially the fan blade mainly depends on the import, and the fan blade has good aerodynamic performance because of its direct capture of wind energy. High quality assurance is the premise of stable operation of wind turbine. This paper puts forward the research topic of "structural analysis and optimization design of wind turbine blade based on parametric modeling". The aerodynamic performance, structure analysis and optimization design are studied in detail. The results are as follows: 1. The aerodynamic load model of fan blade is established based on the theory of blade element and momentum, and the influence of blade tip loss correction model is taken into account. The axial and circumferential induction factors are determined more accurately. Based on the GL2010 standard, various loads such as gravity load, centrifugal force load and aerodynamic load on the wind turbine are analyzed. The load and design conditions of the wind turbine are studied, and the wind turbine model is established by BLADED, which includes blade, airfoil, impeller, tower, power transmission chain, engine room and control module. By calculating the cross-section load distribution of the fan under various working conditions, the maximum extreme condition of the cross-section load is selected, and the ultimate load at each section of the blade is obtained. It lays a foundation for the following structure analysis and optimization of blade. 2 on the basis of exploring the blade structure and layering mode, the integrated expression of blade chord length, torsion angle and relative thickness was put forward, and the three-dimensional coordinate of blade space was obtained by the blade three-dimensional shape parameter expression. The parametric geometric model of blade was established by MATLAB programming and combined with ANSYS secondary development from bottom to top, and the finite element mechanical model of blade was established according to the lamination material and layering method. The reliability of the model is verified by calculating the mass and center of gravity of the blade and comparing with the experimental results. (3) the low-order natural frequency and mode shape of the blade are obtained by modal analysis of the blade, which is not different from the experimental results. The resonance phenomenon of the blade is analyzed during the normal operation, because the blade is composed of composite material. The composite material shows anisotropy, and the blade is mainly composed of wing surface, leaf root, main beam and web. The materials and laying methods of each part are different. Therefore, when checking the strength of the blades at school, the above parts should be checked separately according to the need. The stiffness of the blades is particularly important, which indicates whether the blades collide with the tower after deformation. (4) taking material thickness, blade structure parameter as optimization variable and blade quality as optimization objective, the mathematical model of blade structure optimization is established on the premise of ensuring blade strength and tip displacement. Through MATLAB and ANSYS programming, the improved particle swarm optimization algorithm is used to find the optimization. After several iterations, it can meet the performance requirements. The research has important practical significance for the optimization and transformation of blade structure and provides the possibility for the aerodynamic and structural integration design of the blade.
【學位授予單位】:重慶大學
【學位級別】:碩士
【學位授予年份】:2014
【分類號】:TM315
【參考文獻】
相關期刊論文 前6條
1 李軍向;薛忠民;王繼輝;馮賓春;;大型風輪葉片設計技術的現(xiàn)狀與發(fā)展趨勢[J];玻璃鋼/復合材料;2008年01期
2 周鵬展;肖加余;曾竟成;王進;楊軍;;基于ANSYS的大型復合材料風力機葉片結構分析[J];國防科技大學學報;2010年02期
3 靳交通;周鵬展;;大型水平軸式風電葉片的結構設計[J];可再生能源;2009年02期
4 成健,曲英杰;基于Pro/E的機翼型風機葉片的建模及平面展開[J];山東科技大學學報(自然科學版);2002年04期
5 吳蔚;王軍;施璐;劉強;楊科;廖猜猜;;基于FOCUS的大型風力機葉片結構分析與鋪層改進[J];水電能源科學;2011年10期
6 張禮達;任臘春;陳榮盛;毛金鐸;;風力機葉片外形設計及三維實體建模研究[J];太陽能學報;2008年09期
本文編號:1416800
本文鏈接:http://sikaile.net/kejilunwen/dianlilw/1416800.html
教材專著