風(fēng)力機(jī)葉片多模態(tài)耦合振動(dòng)研究
本文關(guān)鍵詞:風(fēng)力機(jī)葉片多模態(tài)耦合振動(dòng)研究 出處:《西南交通大學(xué)》2014年博士論文 論文類型:學(xué)位論文
更多相關(guān)文章: 風(fēng)力機(jī)葉片 多模態(tài)耦合 氣彈性穩(wěn)定性 動(dòng)態(tài)特性 配重 超諧波共振 內(nèi)外聯(lián)合共振
【摘要】:本文系統(tǒng)研究了風(fēng)力機(jī)葉片多模態(tài)耦合振動(dòng),重點(diǎn)討論耦合因素(拉彎耦合、高低階模態(tài)耦合、彎彎耦合)對(duì)葉片氣彈性穩(wěn)定性、振動(dòng)特性、非線性動(dòng)力學(xué)行為和穩(wěn)定性的影響。第1章介紹了本文的研究背景和意義,從葉片動(dòng)力學(xué)模型、氣彈性穩(wěn)定性、振動(dòng)特性、非線性動(dòng)力學(xué)行為及穩(wěn)定性等幾個(gè)方面綜述了國(guó)內(nèi)外的研究現(xiàn)狀和存在的問(wèn)題,簡(jiǎn)述了本文擬開展的工作。第2章綜合考慮幾何非線性、截面非對(duì)稱性、傾斜安裝、質(zhì)量偏心、氣動(dòng)偏心、錐角、截面預(yù)扭角、結(jié)構(gòu)阻尼、重力、氣動(dòng)力等因素,使用廣義哈密頓原理建立了風(fēng)力機(jī)葉片拉伸-揮舞-擺振-扭轉(zhuǎn)耦合非線性振動(dòng)控制方程。通過(guò)和已有模型對(duì)比,驗(yàn)證了該模型的準(zhǔn)確性和普遍適用性,最后簡(jiǎn)單討論了控制方程的求解方法。第3章研究了葉片在耦合非線性振動(dòng)下的氣彈性穩(wěn)定性問(wèn)題,為考慮非線性對(duì)氣彈性的影響,將位移分解為靜態(tài)位移和動(dòng)態(tài)位移,藉此把非線性項(xiàng)線性化,然后將氣彈性穩(wěn)定性問(wèn)題轉(zhuǎn)化為復(fù)模態(tài)問(wèn)題,并將假設(shè)模態(tài)法引入到對(duì)復(fù)模態(tài)問(wèn)題的求解。分析了控制參數(shù)對(duì)葉片靜態(tài)變形的影響、揮舞-擺振間的耦合對(duì)氣彈性穩(wěn)定性的影響。研究表明:利用揮舞-擺振間的耦合可以改善出現(xiàn)在擺振方向的氣彈性不穩(wěn)定性,但當(dāng)槳距角很大時(shí),揮舞-擺振耦合反而會(huì)造成氣彈性不穩(wěn)定性。第4章研究了非定常氣動(dòng)力作用下葉片耦合振動(dòng)的動(dòng)態(tài)特性問(wèn)題,將基于Green函數(shù)的數(shù)值差分法引入到對(duì)變截面葉片耦合振動(dòng)模態(tài)問(wèn)題的研究,重點(diǎn)考慮了各向振動(dòng)間的耦合和配重對(duì)固有頻率和模態(tài)的影響。研究表明:高轉(zhuǎn)速時(shí)揮舞-擺振間的耦合對(duì)彎曲頻率影響顯著;由于離心剛化效應(yīng),彎曲頻率隨轉(zhuǎn)速的增加而增高;當(dāng)配重物放置在葉根附近時(shí),配重對(duì)頻率和模態(tài)的影響非常小,但當(dāng)配重物放置在葉尖處時(shí),配重會(huì)顯著改變頻率和模態(tài)振型;配重不改變離心剛化效應(yīng)。第5章研究了超諧波共振下葉片拉彎(拉伸-揮舞)耦合非線性動(dòng)力學(xué)行為和穩(wěn)定性。使用多重尺度法求解葉片振動(dòng)的穩(wěn)態(tài)響應(yīng),由雅可比矩陣判斷運(yùn)動(dòng)穩(wěn)定性。受非線性因素影響,超諧波共振的共振峰不一定出現(xiàn)在解諧參數(shù)σ=0處,本章給出超諧波共振峰對(duì)應(yīng)的解諧參數(shù)隨設(shè)計(jì)參數(shù)變化的一個(gè)近似估計(jì),進(jìn)而討論動(dòng)態(tài)響應(yīng)和穩(wěn)定性隨設(shè)計(jì)參數(shù)和氣動(dòng)因素的變化,該方法可推廣到其它類型的共振。拉彎耦合的研究結(jié)果表明:軸向拉伸主要表現(xiàn)為靜態(tài)變形,因此軸向運(yùn)動(dòng)對(duì)揮舞的影響主要是通過(guò)離心剛化效應(yīng)影響揮舞彎曲固有頻率;揮舞對(duì)軸向運(yùn)動(dòng)動(dòng)態(tài)位移影響非常小,即便在揮舞方向有超諧波共振發(fā)生,軸向動(dòng)態(tài)位移也非常小。本章還借助實(shí)例分析了不同的設(shè)計(jì)參數(shù)下葉片共振動(dòng)態(tài)響應(yīng)隨氣動(dòng)阻尼的演化,研究表明:對(duì)大氣動(dòng)阻尼,葉片響應(yīng)在共振模態(tài)的分量為穩(wěn)定的單倍外激勵(lì)周期的響應(yīng);隨著氣動(dòng)阻尼的減小,非線性影響更加顯著,共振模態(tài)的周期響應(yīng)不再穩(wěn)定且其周期變?yōu)槎啾锻饧?lì)周期,最后演化為擬周期響應(yīng)。第6章研究了揮舞、擺振間的彎彎耦合非線性振動(dòng),考慮了經(jīng)常出現(xiàn)在揮舞和擺振低階模態(tài)的1:2內(nèi)共振,對(duì)非線性控制方程進(jìn)行Galerkin截?cái)?得到動(dòng)態(tài)位移方程,使用模態(tài)變換對(duì)剛度項(xiàng)進(jìn)行解耦,由多重尺度法求解共振穩(wěn)態(tài)響應(yīng),討論了設(shè)計(jì)參數(shù)、風(fēng)速、幾何非線性、氣動(dòng)非線性等因素對(duì)共振響應(yīng)和穩(wěn)定性的影響。研究表明:正常運(yùn)轉(zhuǎn)情況下,葉片彎彎耦合振動(dòng)存在穩(wěn)定的平凡響應(yīng)和不穩(wěn)定的非平凡響應(yīng);隨風(fēng)速的增加,葉片耦合振動(dòng)出現(xiàn)亞臨界分叉,非平凡響應(yīng)消失,平凡響應(yīng)不再穩(wěn)定;減弱非線性可使分叉的臨界風(fēng)速升高,進(jìn)而改善葉片穩(wěn)定性。第7章研究了內(nèi)外共振聯(lián)合作用下?lián)]舞振動(dòng)高低階模態(tài)間的耦合對(duì)葉片非線性動(dòng)力學(xué)行為和穩(wěn)定性的影響,其中內(nèi)共振為揮舞前兩階模態(tài)間的1:3內(nèi)共振,外共振為出現(xiàn)在揮舞第一階模態(tài)的主共振。使用多重尺度法求解了組合共振(CR)和單獨(dú)的主共振(PPR)下葉片穩(wěn)態(tài)振動(dòng)的動(dòng)態(tài)響應(yīng),通過(guò)比較CR和PPR的結(jié)果分析了內(nèi)共振(即模態(tài)耦合)對(duì)外共振的影響,并討論了外激勵(lì)、阻尼和非線性因素對(duì)兩個(gè)共振的影響,最后通過(guò)實(shí)例分析了安裝角、錐角、入流速度比等設(shè)計(jì)參數(shù)對(duì)共振響應(yīng)和穩(wěn)定性的影響。研究表明:內(nèi)共振對(duì)外共振引起的響應(yīng)和不穩(wěn)定性具有抑制作用,通過(guò)設(shè)置高低階模態(tài)間的內(nèi)共振來(lái)控制外共振是合理的。最后,對(duì)本文的研究?jī)?nèi)容、研究方法和研究結(jié)果進(jìn)行了總結(jié),并給出了未來(lái)的研究計(jì)劃。
[Abstract]:This paper studies the multi modal coupling vibration of wind turbine blades, discussed the coupling factors (bending coupling, high order mode coupling, the coupling) on leaf gas elastic stability, vibration characteristics, influence of nonlinear dynamic behavior and stability. The first chapter introduces the research background and significance, from the blade aeroelastic dynamics model. Stability and vibration characteristics, several aspects of nonlinear dynamics and stability of review of the domestic and foreign research situation and existing problems, this paper outlines the work to be undertaken. In the second chapter, considering the geometric nonlinearity, non symmetry section, inclined installation, mass eccentricity, aerodynamic eccentricity, cone angle, pre twist angle structure section. Damping, gravity, aerodynamic force and other factors, a wind turbine blade tension - coupled flap lag torsion vibration control of nonlinear equations using generalized Hamilton principle. And through the existing model Compared to verify the accuracy of the model and general applicability, finally discussed the method for solving the control equation. The third chapter studies the aeroelastic stability problem in nonlinear coupled vibration of blade, considering the influence of nonlinear aeroelastic, displacement can be decomposed into static displacement and dynamic displacement, by linearizing the nonlinear term then, the aeroelastic stability problem is transformed into a complex mode, and the assumed mode method is introduced to solve the problem of complex modal analysis. The effect of control parameters on blade static deformation, influence of flap lag between elastic coupled vibration on gas stability. The research shows that with flap lag between the coupling vibration to improve the stability in the aeroelastic shimmy direction, but when the pitch angle is large, waving shimmy coupling will cause the aeroelastic instability. The fourth chapter studies the unsteady aerodynamic effect The dynamic characteristics of leaves under coupled vibration, the Green function value difference method is introduced into the research of variable cross-section blade modal coupling problem based on considering the coupling influence between the vibration and the weight of each natural frequency and modal. The research showed that the high speed waving effect of coupled vibration between the pendulum bending frequency significantly; due to the centrifugal stiffening effect, bending frequency increases with increasing rotational speed; when the counterweight is placed in near the hub, counterweight to the influence on the resonant frequency and the modal is very small, but when the counterweight is placed on the tip, the weight will significantly change the frequency and modal; weight does not change the centrifugal stiffness effect. The fifth chapter studies the super harmonic resonance of blades under bending (tensile wave) coupling nonlinear dynamic behavior and stability of steady state response. Using the method of multiple scales for blade vibration, by Jacobi matrix judgment Fault movement stability. By nonlinear factors, the resonance peak of super harmonic resonance does not necessarily appear in the detuning parameter =0, a solution of this chapter the harmonic parameters of harmonic resonance peak corresponds with the change of the design parameters of approximate estimation, and then discussed the dynamic response and stability of dynamic factors with the change of design parameters and the. The method can be extended to other types of resonance. The results show that the bending coupling axial tension mainly for static deformation, so the axial motion of the wave is affected mainly by the centrifugal stiffening effect of wave bending natural frequency; wave effect on the axial movement of dynamic displacement is very small, even in the direction of super harmonic resonance wave also, the axial dynamic displacement is very small. This chapter also analyzes with examples with aerodynamic damping evolution, dynamic response of blade resonance under different design parameters on the research shows that: Air damping, blade response stability for single resonance mode excitation component in the cycle; with aerodynamic damping decreases, nonlinear effect is more significant, periodic resonance mode response is no longer stable and its cycle times for the excitation period, finally evolved into a quasi periodic response. The sixth chapter studies the pendulum swing the nonlinear vibration of coupled vibration between the considered frequently appear in the 1:2 internal resonance and waving shimmy of low order modes, the truncated Galerkin nonlinear control equation, the dynamic equation of displacement, stiffness of the decoupling modal transform, response by the method of multiple scales for the steady-state resonance, design parameters, discussed wind speed. The geometric nonlinear effect, aerodynamic nonlinear factors of resonance and stability. The results showed: in normal operating conditions, the stability of the trivial response and curved blade vibration coupling exists Unstable non trivial response; the wind speed increases, the blade coupling vibration of the subcritical bifurcation, non trivial response disappeared, no longer trivial response stability; critical wind speed can make the bifurcation of the nonlinear increase weakened, and improve the blade stability. The seventh chapter studies the internal resonance combined by wave coupled vibration modes of the impact on the level of the nonlinear dynamic behavior and stability of the blade, which is in resonance wielding 1:3 internal resonance between the first two modes, and resonance appears in the main resonance wave of the first order modal. Using multiple scale method combined resonance (CR) and separate primary resonance (PPR) dynamic blade steady vibration response by comparison of CR and PPR results of internal resonance (i.e. modal coupling) affect the external resonance, and discusses the influence of external excitation, damping and nonlinear factors on the two resonance, finally real Example analysis of the installation angle and cone angle, flow velocity ratio design parameters on resonance and stability effects. The results show that: the response caused by the resonance and internal resonance of external instability inhibited by setting the level of internal resonance modes to control external resonance is reasonable. Finally, the research content of in this paper, research methods and research results are summarized, and gives the research plan for the future.
【學(xué)位授予單位】:西南交通大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2014
【分類號(hào)】:TM315;O322
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 趙娜;李軍向;李成良;;基于ANSYS建模的風(fēng)力機(jī)葉片模態(tài)分析及穩(wěn)定性分析[J];玻璃鋼/復(fù)合材料;2010年06期
2 陳小波;李靜;陳健云;;考慮離心剛化效應(yīng)的旋轉(zhuǎn)風(fēng)力機(jī)葉片動(dòng)力特性分析[J];地震工程與工程振動(dòng);2009年01期
3 賀德馨;;風(fēng)能技術(shù)可持續(xù)發(fā)展綜述[J];電力設(shè)備;2008年11期
4 康順;尹景勛;劉云飛;;水平軸風(fēng)力機(jī)結(jié)構(gòu)動(dòng)力學(xué)分析[J];工程熱物理學(xué)報(bào);2009年05期
5 李靜;陳健云;陳小波;;近海風(fēng)機(jī)葉片動(dòng)力特性分析(英文)[J];Journal of Marine Science and Application;2011年01期
6 沈宏;耿超;劉楠;李偉麗;邱軍亮;;國(guó)內(nèi)外風(fēng)電產(chǎn)業(yè)現(xiàn)狀及其發(fā)展前景[J];河南科技學(xué)院學(xué)報(bào)(自然科學(xué)版);2010年01期
7 劉雄;李鋼強(qiáng);陳嚴(yán);葉枝全;;水平軸風(fēng)力機(jī)葉片動(dòng)態(tài)響應(yīng)分析[J];機(jī)械工程學(xué)報(bào);2010年12期
8 卞于中,周 玉,李學(xué)士,崔爾杰,虞心田;風(fēng)力機(jī)葉片氣動(dòng)彈性實(shí)驗(yàn)研究[J];氣動(dòng)實(shí)驗(yàn)與測(cè)量控制;1994年03期
9 吳春梅;田瑞;劉博;高志鷹;;小型水平軸風(fēng)力機(jī)葉片的振動(dòng)性能的研究[J];能源技術(shù);2006年05期
10 羅如意;林曄;錢野;;世界風(fēng)電產(chǎn)業(yè)發(fā)展綜述[J];可再生能源;2010年02期
,本文編號(hào):1414147
本文鏈接:http://sikaile.net/kejilunwen/dianlilw/1414147.html