基于轉(zhuǎn)子磁場(chǎng)定向的三電平控制系統(tǒng)的研究
本文關(guān)鍵詞:基于轉(zhuǎn)子磁場(chǎng)定向的三電平控制系統(tǒng)的研究 出處:《東北大學(xué)》2014年碩士論文 論文類型:學(xué)位論文
更多相關(guān)文章: 三電平逆變器 SVPWM 磁場(chǎng)定向 中點(diǎn)控制
【摘要】:本文以感應(yīng)電機(jī)為控制對(duì)象,以二極管箝位式三電平拓?fù)浣Y(jié)構(gòu)為平臺(tái),研究了三電平中點(diǎn)算法及感應(yīng)電機(jī)基于轉(zhuǎn)子磁場(chǎng)定向的矢量控制。從理論分析,仿真驗(yàn)證和實(shí)驗(yàn)研究對(duì)中點(diǎn)算法及感應(yīng)電機(jī)的矢量控制進(jìn)行了深入研究。首先,本文介紹了二極管箝位型三電平逆變器的拓?fù)浣Y(jié)構(gòu)和三電平SVPWM算法的原理,通過(guò)60度坐標(biāo)系,對(duì)三電平SVPWM算法進(jìn)行了簡(jiǎn)化,Simulink中的仿真結(jié)果驗(yàn)證了改進(jìn)后的三電平SVPWM算法的正確性。之后,分析了幾種基本電壓矢量對(duì)中點(diǎn)電位的影響,并針對(duì)基本電壓矢量作用下產(chǎn)生的中點(diǎn)電位偏移這一二極管箝位型三電平逆變器的固有問(wèn)題,本文進(jìn)行了深入的討論,詳細(xì)分析了其產(chǎn)生的本質(zhì)原因,并給出了中點(diǎn)電位平衡法對(duì)系統(tǒng)進(jìn)行改進(jìn)。隨后在中點(diǎn)電位控制的系統(tǒng)Simulink仿真方面,仿真結(jié)果表明了所提出的控制方法能夠很好地解決這一問(wèn)題。然后,引入了感應(yīng)電機(jī)在三相靜止坐標(biāo)系下的數(shù)學(xué)模型,推導(dǎo)了感應(yīng)電機(jī)基于轉(zhuǎn)子磁場(chǎng)定向的同步坐標(biāo)系下的數(shù)學(xué)模型,進(jìn)而介紹了轉(zhuǎn)子磁場(chǎng)定向和定子磁場(chǎng)定向的基本原理。隨后介紹了用Matlab/Simulink仿真軟件搭建的基于轉(zhuǎn)子磁場(chǎng)定向的異步電機(jī)仿真模型;基于仿真模型,進(jìn)行了大量仿真實(shí)驗(yàn),結(jié)果表明:矢量控制系統(tǒng)具有很好的動(dòng)態(tài)響應(yīng)和穩(wěn)態(tài)精度。最后,在以TMS320F28335和EPM570為控制核心的硬件控制電路,二極管箝位式三電平逆變器的實(shí)驗(yàn)平臺(tái)上,對(duì)改進(jìn)的三電平SVPWM算法進(jìn)行了實(shí)驗(yàn),實(shí)驗(yàn)結(jié)果驗(yàn)證了這種算法的正確性。在此基礎(chǔ)上,進(jìn)行了中點(diǎn)算法實(shí)驗(yàn),實(shí)驗(yàn)結(jié)果證明了改進(jìn)的中點(diǎn)算法對(duì)中點(diǎn)調(diào)節(jié)有很好的效果,并在中高壓大功率變頻器實(shí)驗(yàn)環(huán)境下對(duì)三電平逆變器的矢量控制系統(tǒng)進(jìn)行了實(shí)驗(yàn)研究,實(shí)驗(yàn)結(jié)果表明:控制系統(tǒng)實(shí)現(xiàn)了中點(diǎn)控制,異步電機(jī)的解耦控制,具有良好的動(dòng)態(tài)響應(yīng)。在文章的最后對(duì)下一步的工作研究提出了建議和展望。
[Abstract]:Based on the induction motor as a control object, the diode clamped three level topology as a platform, on the three level neutral point algorithm and induction motor rotor field oriented vector control. Based on the theoretical analysis, simulation and Experimental Research on vector control of induction motor and the midpoint algorithm is studied. Firstly, this paper introduces the principle of topology of diode clamped three level inverter and three level SVPWM algorithm, by 60 coordinate system and three level SVPWM algorithm was simplified, Simulink simulation results verify the correctness of three level improved SVPWM algorithm. After the analysis of the influence of several kinds of basic voltage vectors on neutral point potential the inherent problem of neutral point voltage for the basic voltage vector generated by the diode clamped three level inverter, this paper makes a deep discussion, The essence of detailed analysis of its causes, and gives the neutral point potential balance method to improve the system. Then the system simulation of Simulink neutral point potential control, the simulation results show that the proposed control method can solve this problem. Then, introducing the mathematical model of induction motor in the three-phase static coordinate system the derivation of the mathematical model of induction motor rotor flux oriented synchronous coordinate system based on, and then introduces the basic principle of rotor field orientation and stator flux orientation. Then introduced the use of Matlab/Simulink simulation software to build the simulation model of induction motor based on rotor flux orientation; based on the simulation model, the simulation experiment results. Show that the vector control system has good dynamic response and steady state accuracy. Finally, based on TMS320F28335 and EPM570 as the core of hardware control Circuit experiment platform of diode clamped three level inverter on the three level of the improved SVPWM algorithm was studied, the experimental results verify the correctness of the algorithm. On this basis, the midpoint algorithm experiment, experimental results show that the improved algorithm has a good effect on the midpoint of regulation, and in in the experimental environment of high voltage power converter of three level inverter vector control system was studied. The experimental results show that the control system can control the midpoint of asynchronous motor, decoupling control, good dynamic response. At the end of the next step of the research work and put forward some recommendations and prospects.
【學(xué)位授予單位】:東北大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2014
【分類號(hào)】:TM464;TM921.5
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 陳世浩;馮曉云;李官軍;王利軍;;基于轉(zhuǎn)子磁場(chǎng)定向的異步電機(jī)矢量控制仿真研究[J];電氣技術(shù);2008年03期
2 林飛,張春朋,宋文超,焦連偉;基于轉(zhuǎn)子磁場(chǎng)定向的異步電機(jī)輸入輸出解耦控制[J];清華大學(xué)學(xué)報(bào)(自然科學(xué)版);2003年09期
3 趙彩紅;;轉(zhuǎn)子磁場(chǎng)定向下有速度傳感器的感應(yīng)電機(jī)矢量控制[J];濟(jì)源職業(yè)技術(shù)學(xué)院學(xué)報(bào);2003年04期
4 范巖;何勇;;轉(zhuǎn)子磁場(chǎng)定向速度自適應(yīng)估算感應(yīng)電機(jī)控制系統(tǒng)的研究[J];電氣傳動(dòng);2006年09期
5 周友,黃立培,陳杰,李永東;異步電機(jī)轉(zhuǎn)子磁場(chǎng)定向無(wú)速度傳感器矢量控制方法[J];清華大學(xué)學(xué)報(bào)(自然科學(xué)版);1999年03期
6 范巖;;無(wú)速度傳感器轉(zhuǎn)子磁場(chǎng)定向感應(yīng)電機(jī)控制系統(tǒng)研究與開發(fā)[J];機(jī)電工程;2005年12期
7 張保倉(cāng);吳香花;;基于Matlab/GUI的異步電動(dòng)機(jī)轉(zhuǎn)子磁場(chǎng)定向仿真系統(tǒng)[J];重慶工學(xué)院學(xué)報(bào)(自然科學(xué)版);2008年12期
8 陳正龍;王耀南;吳亮紅;;混合電動(dòng)汽車驅(qū)動(dòng)電機(jī)AC22的轉(zhuǎn)子磁場(chǎng)定向矢量控制研究[J];交通與計(jì)算機(jī);2006年06期
9 石嚴(yán);;芻議異步電動(dòng)機(jī)轉(zhuǎn)子磁場(chǎng)定向矢量控制系統(tǒng)[J];科技信息;2009年01期
10 范巖;何勇;;基于DSP的轉(zhuǎn)子磁場(chǎng)定向感應(yīng)電機(jī)控制系統(tǒng)實(shí)現(xiàn)[J];微計(jì)算機(jī)信息;2006年11期
相關(guān)博士學(xué)位論文 前1條
1 趙云;交流電機(jī)高速化驅(qū)動(dòng)關(guān)鍵控制技術(shù)研究[D];華中科技大學(xué);2012年
相關(guān)碩士學(xué)位論文 前1條
1 郝文升;基于轉(zhuǎn)子磁場(chǎng)定向的三電平控制系統(tǒng)的研究[D];東北大學(xué);2014年
,本文編號(hào):1403835
本文鏈接:http://sikaile.net/kejilunwen/dianlilw/1403835.html