基于多智能體遺傳算法的配電網(wǎng)故障恢復(fù)
本文關(guān)鍵詞:基于多智能體遺傳算法的配電網(wǎng)故障恢復(fù) 出處:《西南交通大學(xué)》2014年碩士論文 論文類型:學(xué)位論文
更多相關(guān)文章: 面向?qū)ο髷?shù)據(jù)庫 廣度優(yōu)先搜索法 前推回代法 GUI 多智能體遺傳算法 配電網(wǎng)故障恢復(fù)
【摘要】:隨著配電網(wǎng)的發(fā)展,配電網(wǎng)變得越來越復(fù)雜,發(fā)生故障的概率增大,而配電網(wǎng)故障恢復(fù),能在配網(wǎng)發(fā)生故障時,根據(jù)配電網(wǎng)的拓?fù)浣Y(jié)構(gòu)和電氣關(guān)系及時處理停電故障,恢復(fù)非故障停電區(qū)域失電負(fù)荷的供電,減少停電范圍和停電時間等,提高供電質(zhì)量,減少經(jīng)濟(jì)損失。因此,研究快速、準(zhǔn)確的配電網(wǎng)故障恢復(fù)策略具有重要的意義。 本文首先闡述了配電網(wǎng)故障恢復(fù)的基本原理、步驟、解決配電網(wǎng)故障恢復(fù)這個多目標(biāo)組合優(yōu)化問題的多目標(biāo)進(jìn)化算法中涉及到的重要定義、一般流程和多智能體遺傳算法,為解決配電網(wǎng)故障提供理論依據(jù);然后,針對配電網(wǎng)故障恢復(fù)給出了一種快速的拓?fù)浞治龊统绷饔嬎惴椒?運(yùn)用基于QT的C++實現(xiàn)用GUI (Graphical User Interface)界面顯示拓?fù)浜统绷饔嬎憬Y(jié)果。結(jié)合傳統(tǒng)數(shù)據(jù)庫存儲和內(nèi)存存儲的優(yōu)勢,解決現(xiàn)有文獻(xiàn)不能同時兼顧計算速度和數(shù)據(jù)維護(hù)的方便性的問題。利用SQL關(guān)系數(shù)據(jù)庫存儲配網(wǎng)的連接關(guān)系和節(jié)點(diǎn)、支路信息,方便數(shù)據(jù)維護(hù),提高拓?fù)渲貥?gòu)的靈活性;在拓?fù)浞治銮?將數(shù)據(jù)庫中的配網(wǎng)信息加載到內(nèi)存中形成面向?qū)ο蟮膶崟r數(shù)據(jù)庫,提高計算實時性,再運(yùn)用廣度優(yōu)先搜索法進(jìn)行拓?fù)浞治?采用前推回代法進(jìn)行潮流計算。通過分別對多電源IEEE16節(jié)點(diǎn)系統(tǒng)和單電源IEEE33節(jié)點(diǎn)系統(tǒng)進(jìn)行配電網(wǎng)拓?fù)浞治龊统绷饔嬎惚砻鳎涸摲椒苷_檢測配網(wǎng)的連通性、判斷是否存在環(huán)路或孤島;具有良好的數(shù)據(jù)維護(hù)性,計算速度快,特別對規(guī)模較大配網(wǎng)進(jìn)行故障分析優(yōu)勢更為顯著,為快速恢復(fù)故障奠定基礎(chǔ);最后,結(jié)合配電網(wǎng)故障恢復(fù)問題的特點(diǎn),給出了一種解決配電網(wǎng)故障恢復(fù)的多智能體遺傳算法。利用簡化的拓?fù)浞治?保證故障支路的編碼都為可行解;結(jié)合快速非支配排序法和擁擠距離的計算,對多個能量的智能體能量進(jìn)行排序比較,減少重復(fù)比較能量的同時可以很好的權(quán)衡多個目標(biāo)函數(shù);運(yùn)用計算效率高的擂臺賽法則構(gòu)造得出多目標(biāo)配電網(wǎng)故障恢復(fù)問題的Pareto最優(yōu)解集。通過采用基于Qt的C++分別對多電源IEEE16節(jié)點(diǎn)系統(tǒng)和單電源IEEE33節(jié)點(diǎn)系統(tǒng)進(jìn)行配電網(wǎng)故障恢復(fù)仿真,結(jié)果表明:該算法有較高的收斂性,并且能夠很好的保持種群多樣性,避免陷入局部最優(yōu)解。
[Abstract]:With the development of the distribution network, the distribution network becomes more and more complex, the probability of failure increases, and the distribution network fault recovery, can occur in the distribution network fault. According to the topology structure and electrical relationship of distribution network, power failure can be dealt with in time, power supply of power loss in non-fault blackout area can be restored, power cut range and blackout time can be reduced, and power supply quality can be improved. Therefore, it is of great significance to study the fast and accurate fault recovery strategy of distribution network. In this paper, the basic principle and steps of fault recovery in distribution network are described firstly, and the important definition of multi-objective evolutionary algorithm for solving the multi-objective combinatorial optimization problem of distribution network fault recovery is discussed. General flow and multi-agent genetic algorithm provide theoretical basis for solving distribution network fault. Then, a fast topology analysis and power flow calculation method for distribution network fault recovery is presented. Using QT-based C to implement GUI graphical User Interface. Interface display topology and power flow calculation results. Combined with the advantages of traditional database storage and memory storage. SQL relational database is used to store the connection relation and node of distribution network, branch information, convenient data maintenance. Improve the flexibility of topology reconstruction; Before topology analysis, the distribution network information in the database is loaded into the memory to form an object-oriented real-time database to improve the real-time computing, and then use the breadth-first search method to carry out topology analysis. Through the topology analysis and power flow calculation of multi-power IEEE16 node system and single-source IEEE33 node system, the forward pushback method is used to calculate power flow. This method can correctly detect the connectivity of the distribution network. Determine whether there are loops or isolated islands; It has good data maintainability, fast calculation speed, especially for large-scale distribution network fault analysis advantages are more significant, for the rapid recovery of fault laid the foundation; Finally, according to the characteristics of distribution network fault recovery problem, a multi-agent genetic algorithm is proposed to solve the distribution network fault recovery problem. The simplified topology analysis is used to ensure that the coding of the fault branch is feasible. Combined with the fast undominated sorting method and the calculation of the crowding distance, the multi-energy agent energy can be sorted and compared, which can reduce the repeated comparison energy and balance the multiple objective functions well. The Pareto optimal solution set of the multi-objective distribution network fault recovery problem is obtained by using the high computational efficiency beating race rule. By using QT based on C + +, the optimal solution set of the multi-objective distribution network fault recovery problem is obtained. Simulation of distribution network fault recovery is carried out for multi-power IEEE16 node system and single-power IEEE33 node system. The results show that the algorithm has high convergence and can maintain population diversity and avoid falling into local optimal solution.
【學(xué)位授予單位】:西南交通大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2014
【分類號】:TM711
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 潘文明;彭青;劉立;李亮;;基于層次關(guān)系的拓?fù)浞治雠潆娋W(wǎng)潮流計算方法[J];安徽電力;2010年04期
2 徐海,王宏,梁志珊;基于啟發(fā)式搜索的配電網(wǎng)供電恢復(fù)系統(tǒng)[J];東北電力學(xué)院學(xué)報;2001年02期
3 馮士剛;艾芊;;帶精英策略的快速非支配排序遺傳算法在多目標(biāo)無功優(yōu)化中的應(yīng)用[J];電工技術(shù)學(xué)報;2007年12期
4 徐玉琴;張麗;王增平;李雪冬;;基于多智能體遺傳算法并考慮分布式電源的配電網(wǎng)大面積斷電供電恢復(fù)算法[J];電工技術(shù)學(xué)報;2010年04期
5 陳竟成,徐德超,于爾鏗;配電網(wǎng)故障恢復(fù)系統(tǒng)[J];電力系統(tǒng)自動化;2000年04期
6 盛四清,梁志瑞,張文勤,楊以涵;基于遺傳算法的地區(qū)電網(wǎng)停電恢復(fù)[J];電力系統(tǒng)自動化;2001年08期
7 吳文傳,張伯明;基于待恢復(fù)樹切割的配電網(wǎng)故障恢復(fù)實時算法[J];電力系統(tǒng)自動化;2003年12期
8 盧志剛;董玉香;;含分布式電源的配電網(wǎng)故障恢復(fù)策略[J];電力系統(tǒng)自動化;2007年01期
9 王守相;李曉靜;肖朝霞;王成山;;含分布式電源的配電網(wǎng)供電恢復(fù)的多代理方法[J];電力系統(tǒng)自動化;2007年10期
10 魏巍;李興源;廖萍;徐嬌;李清云;周鑫;;含分布式電源的電力系統(tǒng)多代理故障恢復(fù)新方法[J];電力系統(tǒng)自動化;2009年03期
,本文編號:1399975
本文鏈接:http://sikaile.net/kejilunwen/dianlilw/1399975.html