基于表面等離子體共振增強的聚合物太陽能電池研究
本文關鍵詞:基于表面等離子體共振增強的聚合物太陽能電池研究 出處:《吉林大學》2014年博士論文 論文類型:學位論文
更多相關文章: 聚合物太陽能電池 體異質結 表面等離子體 Ag納米粒子 Au納米粒子
【摘要】:共軛導電聚合物材料由于其具有柔韌性、易加工性,又具有半導體特性及導電特性等優(yōu)點被人們所關注。隨著人們對導電聚合物的不斷深入探索,把它應用于太陽能電池器件,研究和開發(fā)低成本的聚合物太陽能電池成為了熱點。但是,聚合物材料的吸收光譜較窄,且利用率較低,導致電池器件的光電轉換效率低;另外,聚合物材料相對于無機半導體材料存在載流子遷移率低,且容易復合,擴散距離短等等問題。解決這些問題方法之一是重點研究吸收光譜寬且吸收系數(shù)高的聚合物材料;另一種方法就是設計陷光結構來提高光吸收,包括等離子體陷光、光子晶體陷光、光柵結構等,這些方法是通過限制入射光的傳輸特性,將光有效的限制在聚合物有源層材料之中,以達到增強光吸收,提高器件光電轉換效率的目的。金屬納米粒子的表面等離子體陷光效應引起了科研工作者們的極大興趣。 在本論文中,通過對金屬納米粒子制作工藝的研究,創(chuàng)新性的采用高真空蒸鍍方法制備金屬納米結構,將該方法應用到聚合物太陽能電池中,系統(tǒng)的研究了金屬納米粒子的表面等離子體效應對聚合物太陽能電池光利用率的影響,通過優(yōu)化制作工藝以及金屬納米粒子大小、位置,有效提升了器件的短路電流密度和能量轉換效率。 Ag納米粒子應用于正型聚合物太陽能器件中。首先,研究正型聚合物體異質結太陽能電池中有源層與電子傳輸層之間用蒸鍍的方式加入Ag納米粒子(1nm),通過實驗觀察到Ag納米粒子(1nm)對正型聚合物體異質結太陽能電池器件的光電流和能量轉換效率的提升作用;其次利用熱蒸發(fā)的方式制備銀納米粒子,將其應用在正型器件的空穴傳輸層中,通過實驗觀察到Ag納米粒子(1nm)使得正型器件的光電流和能量轉換效率都有所提升;再次,然后我們用熱蒸發(fā)的方式制備銀納米粒子,并將Ag納米粒子(1nm)同時應用在正型器件的空穴傳輸層與電子傳輸層中,并對納米粒子在空穴傳輸層中的位置進行優(yōu)化。通過實驗得到雙納米粒子的局域表面等離子體作用以及強散射作用,使器件性能得到了大幅度提高,器件的效率為2.31%,提高了約200%。為了進一步驗證實驗的準確性,我們對器件進行了原子力表面形貌分析表征、紫外-可見吸收分析表征、導電性提高的驗證。論證了金屬納米粒子的引入對有機光伏器件光吸收性能和導電性能的作用。 Ag納米粒子應用在反型聚合物太陽能電池中。簡單介紹了TiO2電子傳輸層,以及運用溶膠-凝膠方法制備TiO2納米層的過程;利用熱蒸發(fā)的方式制備銀納米粒子,將其應用在基于TiO2薄膜的反型聚合物太陽能電池器件的空穴傳輸層中,通過實驗驗證了Ag納米粒子對器件的短路電流密度和能量轉換效率的提升作用;比較了不同厚度(1nm、3nm、5nm、8nm、10nm)Ag薄膜對器件性能的不同影響,得出當Ag薄膜為1nm時器件的性能得到了最大的提高器件的光電轉換效率,效率提高到了3.35%,提高了約24%;并且對電池器件進行了紫外-可見吸收分析表征、復阻抗分析分析表征以及用FDTD軟件模擬了Ag納米粒子近場強度分布情況,有力的驗證了銀納米粒子的加入器件性能的改善。 Ag納米粒子與Au納米粒子加入到基于PSBTBT:PC71BM的體異質反型聚合物太陽能器件的空穴傳輸層中。制作了PSBTBT:PC71BM不同質量比下的器件,優(yōu)化納米薄膜的厚度來最大限度的改善器件的性能。首先,Ag納米粒子加入基于PSBTBT:PC71BM(質量比1:1.5)的體異質結的反型器件中,對器件的短路電流密度和能量轉換效率的提升作用;比較了不同厚度(1nm、3nm)Ag薄膜對器件性能的不同影響,得出當Ag薄膜為1nm時器件的性能得到了最大的提高:器件的光電轉換效率提高到了3.55%,提高了約52%。其次,Ag納米粒子加入基于PSBTBT:PC71BM(質量比1:1)的體異質結的反型器件中,對器件的短路電流密度和能量轉換效率的提升作用;在空穴傳輸層MoO3中引入1nm Ag(即Ag納米粒子)后,器件的光電轉換效率提高到了3.15%,提高了約41%。最后,Au納米粒子加入基于PSBTBT:PC71BM(質量比1:1)的體異質結的反型器件中,對器件的短路電流密度和能量轉換效率的提升作用;比較了不同厚度(1nm、3nm)Au薄膜對器件性能的不同影響,,得出當Au薄膜為1nm時器件的性能得到了最大的提高,能量轉換效率提高到了3.26%。
[Abstract]:Conjugated conductive polymer materials because of its flexibility, ease of processing, but also has the advantages of semiconductor properties and electrical properties of attention. As people continue to explore in depth of the conductive polymers, it is applied to the solar cell devices, polymer solar battery research and development of low cost has become a hot spot. However, the absorption spectra of polymer materials the narrow, and the utilization rate is low, resulting in the photoelectric conversion efficiency of the battery device is low; in addition, the polymer material relative to the inorganic semiconductor material has low carrier mobility, and easy to composite, short diffusion distance and so on. One of the methods to solve these problems is the focus of research on wide absorption spectrum and the absorption coefficient of high polymer material; the other a method is designed to improve the light absorption and light trapping structure, including plasma trap light, light in photonic crystal, grating structure, these methods The transmission characteristics of the incident light will limit, effective limits in the polymer active layer material, in order to enhance the light absorption, improve the photoelectric conversion efficiency of the device. The surface plasmon of metal nanoparticles with light trapping effect has attracted great interest of researchers.
In this paper, through the research on the fabrication process of metal nanoparticles, innovative high vacuum evaporation plating method for preparing metal nano structure, the method is applied to the polymer solar cells, and systematic study of the surface plasmon effect of metal nanoparticles light utilization effect on polymer solar cell, by optimizing the production process and metal nanoparticle size, position, effectively enhance the short-circuit current density and energy conversion efficiency of the device.
The application of Ag nanoparticles Yu Zheng type polymer solar devices. Firstly, the research object is the polymer heterojunction solar cells between the active layer and the electron transport layer by deposition method adding Ag nanoparticles (1nm), observed by experiments of Ag nanoparticles (1nm) optical current and energy conversion and polymer bulk heterojunction solar cell devices efficiency enhance the role of the positive type; preparation of silver nanoparticles by using thermal evaporation method and its application in the hole transport layer type devices, Ag nanoparticles observed by experiment (1nm) makes the light current and energy conversion efficiency of the device is increased; again, then we use thermal evaporation method preparation of silver nanoparticles and Ag nanoparticles (1nm) and the application in the hole transport layer is device and the electronic transmission layer, and the position of the nanoparticles in the hole transport layer in the For optimization. Get localized surface plasmon effect of dual nanoparticles and strong scattering effect through the experiment, the performance of the device is greatly improved, the device efficiency was 2.31%, increased by 200%. in order to further verify the accuracy of the experiment, we are characterized by atomic force morphology on device, UV Vis absorption analysis. Verify, improve the conductivity. It introduced metal nanoparticles on the optical absorption properties of organic photovoltaic devices and electrical conductivity.
The application of Ag nanoparticles in the inverted polymer solar cells. A brief introduction of the TiO2 electron transport layer, and the application of sol gel method preparation of TiO2 nano layer; silver nanoparticles prepared by thermal evaporation method and its application in the hole transport layer based on the inverted polymer solar cell devices in TiO2 films by the experiment proved to enhance the role of the short circuit current density and energy conversion efficiency of Ag nanoparticles; comparison of different thickness (1nm, 3nm, 5nm, 8nm, 10nm) of different Ag film on the performance of the device, when the photoelectric conversion efficiency of devices has been the biggest efficiency of Ag thin film for the performance of 1nm devices. The efficiency is increased to 3.35%, increased by 24%; and the battery device by UV Vis characterization, complex impedance analysis and characterization using FDTD software to simulate the Ag nano particles in The distribution of the field strength proves the improvement of the performance of the silver nanoparticles.
Ag nanoparticles and Au nanoparticles based on PSBTBT:PC71BM layer heterogenous inverted polymer solar devices. Making more than PSBTBT:PC71BM under the different device quality, performance optimization of nano film thickness to improve the device maximum. Firstly, Ag nanoparticles based on PSBTBT:PC71BM (1:1.5) - type device body heterojunction, enhance the short-circuit current density and energy conversion efficiency of the device; comparison of different thickness (1nm, 3nm) Ag films of different influence on the performance of the device, when that was the largest increase of Ag thin film for the performance of 1nm device: the photoelectric conversion efficiency of the device is increased to 3.55%. Improved about 52%. second, Ag nanoparticles based on PSBTBT:PC71BM (1:1) - type device of bulk heterojunction, the short-circuit current density of the device and energy To enhance the role of conversion efficiency; the introduction of 1nm Ag MoO3 in the hole transport layer (Ag nanoparticles), photoelectric conversion efficiency of the device is increased to 3.15%, increased by 41%. finally, Au nanoparticles based on PSBTBT:PC71BM (1:1) - type device of bulk heterojunction, enhance the short-circuit current density and the energy conversion efficiency of the device; comparison of different thickness (1nm, 3nm) Au films of different influence on the performance of the device, when that was the largest increase of Au film as the performance of 1nm devices, the energy conversion efficiency is increased to 3.26%.
【學位授予單位】:吉林大學
【學位級別】:博士
【學位授予年份】:2014
【分類號】:TM914.4
【參考文獻】
相關期刊論文 前10條
1 李璐;于軍勝;黎威志;李青;李偉;蔣亞東;;基于NPB的未摻雜高效藍色有機電致發(fā)光器件[J];半導體光電;2007年06期
2 喻強,郝保紅;納米粒子的制備方法及應用[J];北京石油化工學院學報;2003年04期
3 王彥濤,韋瑋,劉俊峰,張輝;聚合物本體異質結型太陽能電池研究進展[J];高分子通報;2004年06期
4 李春燕,李懋強;TiO_2的溶膠-凝膠過程研究[J];硅酸鹽學報;1996年03期
5 李貴芳;全威;劉金鎖;陳磊;張吉東;閆東航;秦大山;;加入NPB提高P3HT:PCBM聚合物太陽能電池光伏性能[J];高分子通報;2012年08期
6 李喜波;唐曉紅;吳衛(wèi)東;唐永建;王紅艷;楊向東;;磁控濺射法制備金團簇納米顆粒及性能表征[J];強激光與粒子束;2006年06期
7 王振林;;表面等離激元研究新進展[J];物理學進展;2009年03期
8 魯厚芳,閻康平,涂銘旌;影響染料敏化二氧化鈦納米晶太陽能電池的因素[J];現(xiàn)代化工;2004年01期
9 林紅;張永昌;李鑫;李建保;;聚合物太陽能電池發(fā)展與展望[J];新材料產(chǎn)業(yè);2011年05期
10 李國龍;何力軍;李進;李學生;梁森;高忙忙;袁海雯;;納米銀增強聚合物太陽能電池光吸收的研究[J];物理學報;2013年19期
本文編號:1395799
本文鏈接:http://sikaile.net/kejilunwen/dianlilw/1395799.html