基于柔性直流聯(lián)網(wǎng)的風力發(fā)電系統(tǒng)的協(xié)調(diào)控制研究
本文關(guān)鍵詞:基于柔性直流聯(lián)網(wǎng)的風力發(fā)電系統(tǒng)的協(xié)調(diào)控制研究 出處:《華北電力大學(xué)》2014年博士論文 論文類型:學(xué)位論文
更多相關(guān)文章: 風力發(fā)電 多端直流 虛擬慣性 一次調(diào)頻 故障穿越 協(xié)調(diào)控制
【摘要】:多端柔性直流輸電技術(shù)更適合風電聯(lián)網(wǎng)系統(tǒng)的潮流優(yōu)化控制,然而直流系統(tǒng)內(nèi)不具備交流同步電網(wǎng)的機械慣性支持,因此風電機組和換流站需具備快速的有功協(xié)同調(diào)節(jié)能力,以提高其穩(wěn)定性。本文首先提出變速風電機組的虛擬慣性和一次調(diào)頻綜合控制策略,使風電機組具有較完備的動態(tài)有功-頻率調(diào)節(jié)能力。然后建立風電端換流站的交流側(cè)頻率與直流側(cè)電壓的聯(lián)動調(diào)節(jié)關(guān)系,進而提出含風電的多端直流系統(tǒng)的有功協(xié)調(diào)控制策略,充分利用各端電網(wǎng)間的相互支持能力及風電機組的機械儲能,確保風電直流聯(lián)網(wǎng)系統(tǒng)穩(wěn)定運行及增強其故障穿越能力。本文的主要研究內(nèi)容如下: 1.研究了變速風電機組及直流輸電系統(tǒng)的動態(tài)模型及控制方法,分析了直流電網(wǎng)的組網(wǎng)方式,提出一種適用于風電聯(lián)網(wǎng)的多端直流系統(tǒng)拓撲結(jié)構(gòu)及其運行模式,搭建了基于直流聯(lián)網(wǎng)的風力發(fā)電系統(tǒng)的仿真平臺,為風電直流聯(lián)網(wǎng)系統(tǒng)的功率協(xié)調(diào)控制策略研究奠定了基礎(chǔ)。 2.分析了變速風電機組虛擬慣性控制及調(diào)頻控制方法,提出了風電機組虛擬慣性與一次調(diào)頻相結(jié)合的綜合頻率控制策略。通過引入減載水平和槳距靜調(diào)差系數(shù)的定義,并利用變槳技術(shù),改進了風電機組的減載運行方法和可整定靜調(diào)差系數(shù)的一次調(diào)頻控制策略,并最終實現(xiàn)了與虛擬慣性控制的有機結(jié)合,使風電場不僅具備慣性頻率響應(yīng),并可滿足系統(tǒng)的一次調(diào)頻要求,進而對電網(wǎng)有功擾動具有較為完備的快速有功調(diào)節(jié)能力。 3.分析了交流電網(wǎng)故障擾動對兩端柔性高壓直流輸電系統(tǒng)穩(wěn)定運行的影響,提出了變速風電機組及換流站協(xié)同控制的兩端柔性直流輸電系統(tǒng)的故障穿越方法。在網(wǎng)側(cè)換流站因電網(wǎng)故障而限流期間,改變風電側(cè)換流站的恒頻控制方式,將直流側(cè)電壓波動與交流側(cè)頻率調(diào)節(jié)建立有效聯(lián)系,從而可通過變速風電機組的虛擬慣性控制快速調(diào)節(jié)電磁功率,利用風電機組的機械儲能為直流系統(tǒng)的故障穿越提供有效支持。該方法成本低,不依賴于通訊,可拓展到多端直流系統(tǒng)之中。 4.含風電的直流系統(tǒng)內(nèi)慣性小、功率波動大,為提高其穩(wěn)定性,本文提出了多端系統(tǒng)之間的分散協(xié)同控制及源網(wǎng)協(xié)調(diào)控制策略,使互聯(lián)系統(tǒng)具備了快速的有功協(xié)同調(diào)節(jié)能力。首先,設(shè)計了各端換流站的分散協(xié)同控制特性,確保直流電網(wǎng)在不同運行模式下均可對直流電壓進行有效控制。然后分別設(shè)計了受端換流站的直流電壓-有功功率控制和風電端換流站的變頻控制環(huán)節(jié),使分散在各端電網(wǎng)內(nèi)的常規(guī)電源以及在綜合頻率控制下的風電均可充分發(fā)揮其有功調(diào)節(jié)能力,實現(xiàn)源網(wǎng)協(xié)調(diào)控制。本文所提出的風電直流聯(lián)網(wǎng)系統(tǒng)的協(xié)調(diào)控制策略,充分利用各端電網(wǎng)間的相互支持能力及風電機組的機械儲能,從而增強了高風電滲透率下直流互聯(lián)電網(wǎng)的穩(wěn)定運行能力,并且該控制策略無需通訊,易于擴展。
[Abstract]:Multi-terminal flexible DC transmission technology is more suitable for wind power network power flow optimization control, but the DC system does not have the mechanical inertia support of AC synchronous power grid. Therefore, wind turbine and converter station need to have rapid active power co-regulation ability to improve its stability. Firstly, this paper puts forward the virtual inertia and primary frequency modulation integrated control strategy of variable speed wind turbine. The wind turbine has more complete dynamic active power and frequency regulation ability. Then, the relationship between AC side frequency and DC side voltage of wind power terminal converter station is established. Furthermore, the active power coordination control strategy of multi-terminal DC system with wind power is put forward, which makes full use of the mutual support ability of each terminal network and the mechanical energy storage of wind turbine. The main contents of this paper are as follows: (1) to ensure the steady operation of wind power DC interconnection system and to enhance its fault traversing capability. 1. The dynamic model and control method of variable speed wind turbine and HVDC transmission system are studied, and the networking mode of DC network is analyzed. A multi-terminal DC system topology structure and its operation mode are proposed, and the simulation platform of wind power generation system based on DC interconnection is built. It lays a foundation for the study of coordinated power control strategy of wind power DC interconnection system. 2. The virtual inertial control and frequency modulation control method of variable speed wind turbine are analyzed. A comprehensive frequency control strategy combining virtual inertia and primary frequency modulation of wind turbine is proposed. By introducing the definitions of load reduction level and pitch static adjustment coefficient, and using the technology of variable propeller. The paper improves the load reduction operation method of wind turbine and the primary frequency modulation control strategy which can adjust the coefficient of static adjustment difference, and finally realizes the organic combination with virtual inertial control, which makes the wind farm not only have the inertial frequency response. The system can meet the requirement of primary frequency modulation, and then has a relatively complete ability of fast active power regulation for the active power disturbance of the power network. 3. The influence of the fault disturbance on the stable operation of the flexible HVDC transmission system is analyzed. This paper presents a fault crossing method for the flexible HVDC transmission system controlled by a variable-speed wind turbine and a converter station. The constant frequency control mode of the wind power converter station is changed during the period when the grid side converter station is limited due to the power network fault. The DC side voltage fluctuation and the AC side frequency regulation can be established effectively so that the electromagnetic power can be adjusted quickly by the virtual inertial control of the variable speed wind turbine. The mechanical energy storage of wind turbine is used to provide effective support for fault passage of DC system. This method is low cost independent of communication and can be extended to multi-terminal DC system. 4. The DC system with wind power has small inertia and large power fluctuation. In order to improve its stability, the decentralized cooperative control and source-network coordination control strategy between multi-terminal systems are proposed in this paper. The interconnected system has the ability of fast active power co-regulation. Firstly, the decentralized cooperative control characteristics of each terminal converter station are designed. It is ensured that DC voltage can be controlled effectively in different operation modes of DC network. Then the DC voltage-active power control of terminal converter station and frequency conversion control link of wind power converter station are designed respectively. The conventional power supply scattered in each terminal network and the wind power under the integrated frequency control can give full play to its active power regulation ability. In this paper, the coordinated control strategy of wind power DC interconnection system is proposed to make full use of the mutual support ability of each terminal network and the mechanical energy storage of wind turbine. Therefore, the stable operation ability of DC interconnected power network under high wind power permeability is enhanced, and the control strategy is easy to be extended without communication.
【學(xué)位授予單位】:華北電力大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2014
【分類號】:TM614
【參考文獻】
相關(guān)期刊論文 前10條
1 胡兆慶,毛承雄,陸繼明,李國棟;一種新型的直流輸電技術(shù)——HVDC Light[J];電工技術(shù)學(xué)報;2005年07期
2 賀益康;周鵬;;變速恒頻雙饋異步風力發(fā)電系統(tǒng)低電壓穿越技術(shù)綜述[J];電工技術(shù)學(xué)報;2009年09期
3 傅曉帆;周克亮;程明;朱曉東;王偉;王彤;;風電場并網(wǎng)用VSC-HVDC的無差拍解耦控制策略[J];電工技術(shù)學(xué)報;2009年11期
4 肖磊;黃守道;黃科元;葉盛;;不對稱電網(wǎng)故障下直驅(qū)永磁風力發(fā)電系統(tǒng)直流母線電壓穩(wěn)定控制[J];電工技術(shù)學(xué)報;2010年07期
5 倪琳娜;羅吉;王少榮;;含風電電力系統(tǒng)的頻率控制[J];電工技術(shù)學(xué)報;2011年S1期
6 辛俊峰;韓金銅;康金良;;基于直流電壓下降特性的VSC-MTDC控制策略研究[J];電力科學(xué)與工程;2011年08期
7 趙成勇,李金豐,李廣凱;基于有功和無功獨立調(diào)節(jié)的VSC-HVDC控制策略[J];電力系統(tǒng)自動化;2005年09期
8 陳海榮;徐政;;適用于VSC-MTDC系統(tǒng)的直流電壓控制策略[J];電力系統(tǒng)自動化;2006年19期
9 關(guān)宏亮;遲永寧;王偉勝;戴慧珠;楊以涵;;雙饋變速風電機組頻率控制的仿真研究[J];電力系統(tǒng)自動化;2007年07期
10 李建林;胡書舉;孔德國;許洪華;;全功率變流器永磁直驅(qū)風電系統(tǒng)低電壓穿越特性研究[J];電力系統(tǒng)自動化;2008年19期
相關(guān)博士學(xué)位論文 前5條
1 楊恩星;低速永磁直驅(qū)風力發(fā)電變流器若干關(guān)鍵技術(shù)研究[D];浙江大學(xué);2009年
2 陳霞;基于多端直流輸電的風電并網(wǎng)技術(shù)研究[D];華中科技大學(xué);2012年
3 郭春義;新型混合雙饋入直流輸電系統(tǒng)的基礎(chǔ)特性研究[D];華北電力大學(xué);2012年
4 王成福;風電場并入電網(wǎng)的調(diào)控理論研究[D];山東大學(xué);2012年
5 劉琳;新能源風電發(fā)展預(yù)測與評價模型研究[D];華北電力大學(xué);2013年
,本文編號:1381450
本文鏈接:http://sikaile.net/kejilunwen/dianlilw/1381450.html