氧化錳納米結(jié)構(gòu)基超級(jí)電容器電極材料研究
發(fā)布時(shí)間:2024-03-16 17:23
能源,對(duì)于人類來說一直是一個(gè)重要的問題。不斷增長(zhǎng)的人口和經(jīng)濟(jì)發(fā)展,提高了化石燃料的消耗,導(dǎo)致大量的溫室氣體排放、氣候變化,造成環(huán)境問題。生產(chǎn)和儲(chǔ)存不同類型能量的替代方式正在成為人類亟待完成的使命。可再生能源,因其低成本和環(huán)境友好特性是最具吸引力的方式之一。以可持續(xù)的方式利用可再生能源的關(guān)鍵問題是如何有效地儲(chǔ)存能量并滿足需求。因此,能源存儲(chǔ)設(shè)備的重要性在最近得到了認(rèn)可。隨著便攜式電子設(shè)備的發(fā)展,柔性電子產(chǎn)品吸引了人們的巨大興趣。已經(jīng)做出了許多努力來制造柔性裝置,比如筆記本電腦、平板電腦、智能手機(jī)、可折疊顯示器、人造電子皮膚、可彎曲的晶體管、電子文件和軍事設(shè)備。電化學(xué)電容器(ECs)也被稱為超級(jí)電容器,尤其是具有柔性電極的超級(jí)電容器,由于其獨(dú)特的高功率密度特性、長(zhǎng)壽命和優(yōu)異的速率能力引起了極大的關(guān)注,滿足下一代電子設(shè)備,尤其是可穿戴設(shè)備的具有更高能量和功率密度的薄、輕、靈活的要求。本研究的目的是通過簡(jiǎn)單的單步水熱法,在不使用任何表面活性劑的情況下,合成用于超級(jí)電容器柔性電極的不同種類的錳氧化物納米結(jié)構(gòu),例如納米顆粒,納米棒,納米線,納米片。并為超級(jí)電容器應(yīng)用開發(fā)高效電極材料。錳氧化物主要集...
【文章頁(yè)數(shù)】:120 頁(yè)
【學(xué)位級(jí)別】:博士
【文章目錄】:
Acknowledgement
Abstract
摘要
List of Abbreviations
1 Introduction
1.1 Objectives of dissertation
1.2 Structure of dissertation
1.3 Supercapacitors
1.4 Types of supercapacitors
1.5 Charge storage mechanism of supercapacitors
1.6 MnO2 as electrode materials for supercapacitors
1.7 Configurations of supercapacitors
1.7.1 Symmetric supercapacitor
1.7.2 Asymmetric supercapacitor
1.7.3 Hybrid supercapacitor
1.8 Electrolytes and separators for supercapacitors
1.9 Experimental Techniques
1.9.1 Synthesis methods
1.9.2 Hydrothermal Synthesis method
1.10 Characterization Techniques
1.10.1 X-ray Diffraction (XRD)
1.10.2 X-ray photoelectron spectroscopy (XPS)
1.10.3 FT-IR spectroscopy
1.10.4 Brunauer-Emmett-Teller (BET)
1.10.5 Scanning Electron Microscopy (SEM)
1.10.6 High-resolution electron microscopy (HRTEM)
1.11 Supercapacitor electrode fabrication and electrochemical measurements
1.11.1 Fabrication of supercapacitors electrode
1.11.2 Cyclic voltammetry (CV)
1.11.3 Galvanostatic charge/discharge (GCD)
1.12 Applications of supercapacitors
1.13 Motivations
1.14 Novelties of thesis
2 MnO2 nanorods forest on carbon textile as efficient electrode material for supercapacitors
2.1 Introduction
2.2 Experimental section
2.2.1 Chemicals and Materials
2.2.2 Hydrothermal synthesis of MnO2-NRF@CT
2.2.3 Characterization
2.2.4 Electrochemical measurements
2.3 Results and discussion
2.3.1 Structure Characterization
2.3.2 Morphological characterization
2.3.3 Electrochemical performance
2.4 Summary
3 Birnessite-type Cu0.45Mn0.55O2 nanosheets on flexible carbon textile for high-performance supercapacitors electrode
3.1 Introduction
3.2 Experimental Section
3.2.1 Chemical and Materials
3.2.2 Growth of Cu0.45Mn0.55O2 nanosheets on carbon textile(CMO-CT)
3.2.3 Characterization
3.2.4 Electrochemical measurements
3.3 Results and discussion
3.3.1 Structural characterization
3.3.2 Morphological characterization
3.3.3 Electrochemical performance
3.4 Summary
4 Controlled Size Mn3O4 Nanoparticles for Supercapacitor Applications
4.1 Introduction
4.2 Experimental Section
4.2.1 Chemical
4.2.2 Synthesis of Mn3O4 nanoparticles
4.2.3 Material Characterizations
4.2.4 Electrode preparation and electrochemical characterization
4.3 Results and Discussion
4.3.1 Structural analysis
4.3.2 Raman analysis
4.3.3 FE-SEM, HR-TEM and EDX analysis of the samples
4.3.4 Electrochemical performance
4.4 Summary
5 Reduced graphene oxide-Mn3O4 nanocomposite as efficient electrode material for supercapacitor
5.1 Introduction
5.2 Experimental Section
5.2.1 Synthesis of GO, rGO and rGO-Mn3O4
5.3 Characterization
5.3.1 Electrode preparation and electrochemical characterization
5.4 Results and discussion
5.5 Summary
6 Mn3O4 nanosheets decorated on flexible carbon textile as flexible supercapacitors electrode
6.1 Introduction
6.2 Experimental Section
6.2.1 Growth of Mn3O4@CF-NS
6.2.2 Characterization
6.2.3 Electrochemical characterization
6.3 Results and discussion
6.4 Summary
7 Conclusion and future perspective
7.1 Conclusion
7.2 Future Recommendations
References
Author's Curriculum Vitae
學(xué)位論文數(shù)據(jù)集
本文編號(hào):3929872
【文章頁(yè)數(shù)】:120 頁(yè)
【學(xué)位級(jí)別】:博士
【文章目錄】:
Acknowledgement
Abstract
摘要
List of Abbreviations
1 Introduction
1.1 Objectives of dissertation
1.2 Structure of dissertation
1.3 Supercapacitors
1.4 Types of supercapacitors
1.5 Charge storage mechanism of supercapacitors
1.6 MnO2 as electrode materials for supercapacitors
1.7 Configurations of supercapacitors
1.7.1 Symmetric supercapacitor
1.7.2 Asymmetric supercapacitor
1.7.3 Hybrid supercapacitor
1.8 Electrolytes and separators for supercapacitors
1.9 Experimental Techniques
1.9.1 Synthesis methods
1.9.2 Hydrothermal Synthesis method
1.10 Characterization Techniques
1.10.1 X-ray Diffraction (XRD)
1.10.2 X-ray photoelectron spectroscopy (XPS)
1.10.3 FT-IR spectroscopy
1.10.4 Brunauer-Emmett-Teller (BET)
1.10.5 Scanning Electron Microscopy (SEM)
1.10.6 High-resolution electron microscopy (HRTEM)
1.11 Supercapacitor electrode fabrication and electrochemical measurements
1.11.1 Fabrication of supercapacitors electrode
1.11.2 Cyclic voltammetry (CV)
1.11.3 Galvanostatic charge/discharge (GCD)
1.12 Applications of supercapacitors
1.13 Motivations
1.14 Novelties of thesis
2 MnO2 nanorods forest on carbon textile as efficient electrode material for supercapacitors
2.1 Introduction
2.2 Experimental section
2.2.1 Chemicals and Materials
2.2.2 Hydrothermal synthesis of MnO2-NRF@CT
2.2.3 Characterization
2.2.4 Electrochemical measurements
2.3 Results and discussion
2.3.1 Structure Characterization
2.3.2 Morphological characterization
2.3.3 Electrochemical performance
2.4 Summary
3 Birnessite-type Cu0.45Mn0.55O2 nanosheets on flexible carbon textile for high-performance supercapacitors electrode
3.1 Introduction
3.2 Experimental Section
3.2.1 Chemical and Materials
3.2.2 Growth of Cu0.45Mn0.55O2 nanosheets on carbon textile(CMO-CT)
3.2.3 Characterization
3.2.4 Electrochemical measurements
3.3 Results and discussion
3.3.1 Structural characterization
3.3.2 Morphological characterization
3.3.3 Electrochemical performance
3.4 Summary
4 Controlled Size Mn3O4 Nanoparticles for Supercapacitor Applications
4.1 Introduction
4.2 Experimental Section
4.2.1 Chemical
4.2.2 Synthesis of Mn3O4 nanoparticles
4.2.3 Material Characterizations
4.2.4 Electrode preparation and electrochemical characterization
4.3 Results and Discussion
4.3.1 Structural analysis
4.3.2 Raman analysis
4.3.3 FE-SEM, HR-TEM and EDX analysis of the samples
4.3.4 Electrochemical performance
4.4 Summary
5 Reduced graphene oxide-Mn3O4 nanocomposite as efficient electrode material for supercapacitor
5.1 Introduction
5.2 Experimental Section
5.2.1 Synthesis of GO, rGO and rGO-Mn3O4
5.3.1 Electrode preparation and electrochemical characterization
5.4 Results and discussion
5.5 Summary
6 Mn3O4 nanosheets decorated on flexible carbon textile as flexible supercapacitors electrode
6.1 Introduction
6.2 Experimental Section
6.2.1 Growth of Mn3O4@CF-NS
6.2.2 Characterization
6.2.3 Electrochemical characterization
6.3 Results and discussion
6.4 Summary
7 Conclusion and future perspective
7.1 Conclusion
7.2 Future Recommendations
References
Author's Curriculum Vitae
學(xué)位論文數(shù)據(jù)集
本文編號(hào):3929872
本文鏈接:http://sikaile.net/kejilunwen/dianlidianqilunwen/3929872.html
最近更新
教材專著