基于電壓源換流器的穩(wěn)定器阻尼電力系統(tǒng)低頻振蕩研究
發(fā)布時(shí)間:2022-08-09 15:09
電壓源換流器(VSC)是交直流緩和系統(tǒng)中最重要的動(dòng)態(tài)組件。VSC與傳統(tǒng)電網(wǎng)的交互作用可能會(huì)產(chǎn)生低頻振蕩(LFO)問(wèn)題,將會(huì)降低電力系統(tǒng)的穩(wěn)定性和可靠性。眾所周知,電力系統(tǒng)低頻振蕩的主要原因是電力系統(tǒng)缺乏足夠的阻尼,主要由以下幾個(gè)原因:(1)大功率長(zhǎng)距離傳輸,(2)大電網(wǎng)的弱連接,(3)高增益快速調(diào)節(jié)的AVR。此外,這些低頻振蕩也是提高電力系統(tǒng)動(dòng)態(tài)特性的主要障礙。如果阻尼不足,低頻振蕩不僅可能引發(fā)嚴(yán)重的故障,而且可能會(huì)導(dǎo)致電力系統(tǒng)崩潰。在電力系統(tǒng)中引入一種基于VSC控制的穩(wěn)定器,可以提高電力系統(tǒng)的阻尼,能夠較好地解決上述問(wèn)題。本文通過(guò)采用模態(tài)分析法研究了基于VSC結(jié)構(gòu)的穩(wěn)定器與常規(guī)電網(wǎng)集成的問(wèn)題,并提出一種適用于單機(jī)無(wú)窮大電力系統(tǒng)的方案。基于模態(tài)分析法的特征值計(jì)算,在電力系統(tǒng)中增加附加阻尼控制器,可以為電力系統(tǒng)提供正阻尼來(lái)抑制低頻振蕩,而其安裝位置和配置參數(shù)也將影響穩(wěn)定器的性能。為了獲得更好的控制性能,本文采用粒子群優(yōu)化算法,以參與因子為基礎(chǔ),選取合適的目標(biāo)函數(shù),來(lái)求取穩(wěn)定器的最佳安裝位置和最優(yōu)配置參數(shù)。其中,目標(biāo)函數(shù)是在系統(tǒng)工作點(diǎn)線性化處理后所得系統(tǒng)模型的臨界模式對(duì)應(yīng)的阻尼比。最終,時(shí)...
【文章頁(yè)數(shù)】:74 頁(yè)
【學(xué)位級(jí)別】:碩士
【文章目錄】:
Abstract
摘要
Chapter 1 Introduction
1.1 Research Problem
1.2 Tasks
1.3 Thesis Overview
Chapter 2 Literature Review
2.1 Types of Low-Frequency Oscillations
2.1.1 Local Machine/Unit System Oscillation
2.1.2 Inter/Wide Area Oscillation
2.2 Methods Used to Analysis Power System Oscillations
2.2.1 Damping Torque Analysis
2.2.2 Modal Analysis/ Eigenvalue Analysis
2.2.2.1 Eigenvalues
2.2.2.2 System Stability and its Eigenvalue
2.2.2.3 Participation Factor
2.3 FACTS based Stabilizers
2.4 PSSs Design to Mitigate LFOs
2.5 Adaptive and Intelligent-based PSS
2.5.1 Fuzzy Logic-based PSS
2.5.2 Neural Network based PSS
2.5.3 Evolutionary Algorithm-based PSS
2.6 Power System Oscillation in HVDC System
2.6.1 HVDC Damping Controllers
2.6.2 PSS type HVDC Damping Controller
2.7 The Impact of Wind Farms in Power System Oscillations
2.7.1 Oscillations in a Power System with Wind Farms
2.7.1.1 Power System with Fixed Speed Wind Turbines
2.7.1.2 Power System with Variable Speed Wind Turbines
2.8 Control of Wind Farms for Enhancing the Damping of Power System Oscillations
2.9 Small Signal Stability of the VSC-based DC/AC PowerSystem
Chapter 3 Research Methodology and System Modeling
3.1 Research Objectives
3.2 Linearized Model of SMIB Install with VSC
3.3 Linearized Model of SMIB Install with VSC and PSS
3.4 Particle Swarm Optimization
3.4.1 Objective Function of PSO
Chapter 4 Results Analysis and Discussion
4.1 Case 1: SMIB Install with VSC without any Stabilizer
4.2 Case 2:PSS Stabilizer added in VSC Controller
4.3 Case 3:PSS Stabilizer added in AVR System
4.4 Case 4:PSS Stabilizer added in VSC and AVR
Chapter 5 Conclusion
FUTURE RECOMMENDATIONS
Appendix
References
致謝
本文編號(hào):3672781
【文章頁(yè)數(shù)】:74 頁(yè)
【學(xué)位級(jí)別】:碩士
【文章目錄】:
Abstract
摘要
Chapter 1 Introduction
1.1 Research Problem
1.2 Tasks
1.3 Thesis Overview
Chapter 2 Literature Review
2.1 Types of Low-Frequency Oscillations
2.1.1 Local Machine/Unit System Oscillation
2.1.2 Inter/Wide Area Oscillation
2.2 Methods Used to Analysis Power System Oscillations
2.2.1 Damping Torque Analysis
2.2.2 Modal Analysis/ Eigenvalue Analysis
2.2.2.1 Eigenvalues
2.2.2.2 System Stability and its Eigenvalue
2.2.2.3 Participation Factor
2.3 FACTS based Stabilizers
2.4 PSSs Design to Mitigate LFOs
2.5 Adaptive and Intelligent-based PSS
2.5.1 Fuzzy Logic-based PSS
2.5.2 Neural Network based PSS
2.5.3 Evolutionary Algorithm-based PSS
2.6 Power System Oscillation in HVDC System
2.6.1 HVDC Damping Controllers
2.6.2 PSS type HVDC Damping Controller
2.7 The Impact of Wind Farms in Power System Oscillations
2.7.1 Oscillations in a Power System with Wind Farms
2.7.1.1 Power System with Fixed Speed Wind Turbines
2.7.1.2 Power System with Variable Speed Wind Turbines
2.8 Control of Wind Farms for Enhancing the Damping of Power System Oscillations
2.9 Small Signal Stability of the VSC-based DC/AC PowerSystem
Chapter 3 Research Methodology and System Modeling
3.1 Research Objectives
3.2 Linearized Model of SMIB Install with VSC
3.3 Linearized Model of SMIB Install with VSC and PSS
3.4 Particle Swarm Optimization
3.4.1 Objective Function of PSO
Chapter 4 Results Analysis and Discussion
4.1 Case 1: SMIB Install with VSC without any Stabilizer
4.2 Case 2:PSS Stabilizer added in VSC Controller
4.3 Case 3:PSS Stabilizer added in AVR System
4.4 Case 4:PSS Stabilizer added in VSC and AVR
Chapter 5 Conclusion
FUTURE RECOMMENDATIONS
Appendix
References
致謝
本文編號(hào):3672781
本文鏈接:http://sikaile.net/kejilunwen/dianlidianqilunwen/3672781.html
最近更新
教材專(zhuān)著