硫電極、電解質(zhì)的結(jié)構(gòu)優(yōu)化及其對鋰硫電池電化學(xué)性能的改善研究
發(fā)布時間:2020-12-11 01:59
現(xiàn)今社會不斷涌現(xiàn)的智能電子產(chǎn)品和電動汽車需要開發(fā)高能量密度和高功率密度的電池。以硫作正極、鋰作負(fù)極的鋰硫電池是一種非常有前途的候選者,鋰硫電池有著高達(dá)2500 Wh kg-1的理論比能量,是傳統(tǒng)商業(yè)鋰離子電池比能量的5倍以上。此外,硫作為一種價格低廉、環(huán)境友好的材料廣泛存在于世界各地。因此,鋰硫電池在過去20年中得到了儲能研究者的大量研究。然而,鋰硫電池有許多問題限制了它的商業(yè)化應(yīng)用,主要包括:硫與其放電產(chǎn)物L(fēng)i2S2/Li2S的導(dǎo)電率低,硫電極在充放電過程中體積膨脹大,多硫陰離子嚴(yán)重的“穿梭效應(yīng)”和鋰枝晶的生成。在醚類電解液體系中,可溶的多硫陰離子會在正極與負(fù)極之間來回遷移而造成“穿梭效應(yīng)”,會嚴(yán)重降低鋰硫電池的庫倫效率與循環(huán)穩(wěn)定性。此外,由于鋰離子在金屬鋰表面的不穩(wěn)定沉積而形成的樹枝狀鋰枝晶可能會刺穿電池隔膜,引起電池內(nèi)短路并帶來安全隱患。針對這兩個主要問題,本論文開展了如下研究:(1)將天然礦物硅藻土作為一種有效的多硫陰離子吸附劑應(yīng)用于硫正極中以提高鋰硫電池的循環(huán)性能硅藻土是一種具有豐富孔結(jié)構(gòu)的生物沉積礦物材料,它主要由Si O2組成并含有少量的Fe2O3、Ca O、Mg O和有...
【文章來源】:中國地質(zhì)大學(xué)湖北省 211工程院校 教育部直屬院校
【文章頁數(shù)】:162 頁
【學(xué)位級別】:博士
【文章目錄】:
作者簡歷
摘要
ABSTRACT
CHAPTER 1 INTRODUCTION
1.1 BACKGROUND
1.2 A BRIEF OVERVIEW OF THE LITHIUM SULFUR BATTERY
1.2.1 Historical development of the lithium sulfur battery
1.2.2 The structure and working principle of the lithium sulfur battery
1.2.3 The working mechanism of the lithium sulfur battery using an ether-based liquid electrolyte
1.2.4 The major problems in the lithium sulfur batteries
1.3 THE RECENT ADVANCES IN LITHIUM SULFUR BATTERIES
1.3.1 The progress of the cathodes of the lithium sulfur batteries
1.3.2 The progress of the novel battery configurations for Li-S systems
1.3.3 The progress of the binders for fabricating the sulfur electrode
1.3.4 The progress of the electrolytes for lithium sulfur batteries
1.3.5 The progress of stabilizing the lithium metal anode
1.4 THE PURPOSE AND CONTENT OF THE RESEARCH
CHAPTER 2 APPLICATION OF DIATOMITE AS AN EFFECTIVE POLYSULFIDES ADSORBENT FOR LITHIUM SULFUR BATTERIES
2.1 INTRODUCTION
2.2 EXPERIMENTAL
2.2.1 Materials
2.2.2 Preparation of sulfur cathode materials
2.2.3 Quantitative determination of the adsorption capacity of diatomite and acetylene black for polysulfides
2.2.4 Material characterization
2.2.5 Electrochemical measurements
2.3 RESULTS AND DISCUSSION
2.3.1 Physical properties of diatomite
2S6 solution"> 2.3.2 The adsorption capability of the diatomite and acetylene black for Li2S6 solution
2.3.3 Physical properties of the S-AB and S-DM-AB composites
2.3.4 Electrochemical properties of S-AB and S-DM-AB cathodes
2.3.5 Observation of the cathodes and anodes of the cells with S-AB and S-DM-AB cathodes after 100 cycles at 0.5 C
2.4 CONCLUSIONS
CHAPTER 3 EXPLORE THE INFLUENCE OF COVERAGE PERCENTAGE OF SULFUR ELECTRODE ON THE CYCLE PERFORMANCE OF LITHIUM SULFUR BATTERIES
3.1 INTRODUCTION
3.2 EXPERIMENTAL
3.2.1 Materials
3.2.2 Preparation of the pristine sulfur electrode
2O3 incorporated composite film and the sealed sulfur electrode"> 3.2.3 Preparation of the nano-Al2O3 incorporated composite film and the sealed sulfur electrode
3.2.4 Cell assembly
3.2.5 Electrochemical measurements
2O3 incorporated composite film"> 3.2.6 Estimation of the electrochemical double layer capacitance (EDLC) of the nano-Al2O3 incorporated composite film
3.2.7 Materials characterization
3.3 RESULTS AND DISCUSSION
3.3.1 XRD and TGA results
3.3.2 Comparison of battery performances
3.3.3 Electrochemical measurements of the cell with sealed sulfur electrode
3.3.4 Revealing the blocking effect of the sealed configuration
3.3.5 Insights into the sealing strategy
3.4 CONCLUSIONS
CHAPTER 4 IMPROVED CYCLING STABILITY OF SULFUR ELECTRODE BY A LI-NAFION-SUPPORTED SEALED CONFIGURATION
4.1 INTRODUCTION
4.2 EXPERIMENTAL
4.2.1 Materials
4.2.2 Preparation of the lithiated Nafion membrane and H-type Nafion membrane
4.2.3 Preparation of the pristine sulfur electrode
4.2.4 Preparation of the Li-Nafion-supported composite film and the Li-Nafion-sealed sulfur electrode
4.2.5 Cell assembly
4.2.6 Characterizations and measurements
4.3 RESULTS AND DISCUSSION
4.3.1 FTIR spectra comparison between the casted H-type Nafion and Li-Nafion membranes
4.3.2 Measuring the lithium ion transference number of the casted Li-Nafion membrane
4.3.3 Morphology and element distribution of the Li-Nafion-supported composite film
4.3.4 The physical characterizations of the sulfur cathode material
4.3.5 Measuring the electrochemical double layer capacitance (EDLC)
4.3.6 The electrochemical performance of the batteries
2O3-supported sealed configuration"> 4.3.7 Comparison of the cycling performances at 0.1 C between the Li-Nafion-supported and nano-Al2O3-supported sealed configuration
4.4 CONCLUSIONS
CHAPTER 5 A SAFE AND LONG LIFE LITHIUM METAL-SULFUR BATTERY ENABLED BY A SINGLE ION CONDUCTING BATTERY STRUCTURE
5.1 INTRODUCTION
5.2 EXPERIMENTAL
5.2.1 Materials
5.2.2 Synthesis
5.2.3 Preparation
5.2.4 Cells assemblies
5.2.5 Characterizations and measurements
5.3 RESULTS AND DISCUSSION
5.3.1 Structural analyses of precursors and grafted polymer
5.3.2 Structural analyses of S@PAN
5.3.3 Physical & Electrochemical properties of the blend polymer electrolyte membrane
5.3.4 "Li | electrolyte | Li" cells for galvanostatic cycling tests
5.4 CONCLUSIONS
CHAPTER 6 CONCLUSIONS
ACKNOWLEDGEMENTS
REFERENCES
本文編號:2909696
【文章來源】:中國地質(zhì)大學(xué)湖北省 211工程院校 教育部直屬院校
【文章頁數(shù)】:162 頁
【學(xué)位級別】:博士
【文章目錄】:
作者簡歷
摘要
ABSTRACT
CHAPTER 1 INTRODUCTION
1.1 BACKGROUND
1.2 A BRIEF OVERVIEW OF THE LITHIUM SULFUR BATTERY
1.2.1 Historical development of the lithium sulfur battery
1.2.2 The structure and working principle of the lithium sulfur battery
1.2.3 The working mechanism of the lithium sulfur battery using an ether-based liquid electrolyte
1.2.4 The major problems in the lithium sulfur batteries
1.3 THE RECENT ADVANCES IN LITHIUM SULFUR BATTERIES
1.3.1 The progress of the cathodes of the lithium sulfur batteries
1.3.2 The progress of the novel battery configurations for Li-S systems
1.3.3 The progress of the binders for fabricating the sulfur electrode
1.3.4 The progress of the electrolytes for lithium sulfur batteries
1.3.5 The progress of stabilizing the lithium metal anode
1.4 THE PURPOSE AND CONTENT OF THE RESEARCH
CHAPTER 2 APPLICATION OF DIATOMITE AS AN EFFECTIVE POLYSULFIDES ADSORBENT FOR LITHIUM SULFUR BATTERIES
2.1 INTRODUCTION
2.2 EXPERIMENTAL
2.2.1 Materials
2.2.2 Preparation of sulfur cathode materials
2.2.3 Quantitative determination of the adsorption capacity of diatomite and acetylene black for polysulfides
2.2.4 Material characterization
2.2.5 Electrochemical measurements
2.3 RESULTS AND DISCUSSION
2.3.1 Physical properties of diatomite
2S6 solution"> 2.3.2 The adsorption capability of the diatomite and acetylene black for Li2S6 solution
2.3.3 Physical properties of the S-AB and S-DM-AB composites
2.3.4 Electrochemical properties of S-AB and S-DM-AB cathodes
2.3.5 Observation of the cathodes and anodes of the cells with S-AB and S-DM-AB cathodes after 100 cycles at 0.5 C
2.4 CONCLUSIONS
CHAPTER 3 EXPLORE THE INFLUENCE OF COVERAGE PERCENTAGE OF SULFUR ELECTRODE ON THE CYCLE PERFORMANCE OF LITHIUM SULFUR BATTERIES
3.1 INTRODUCTION
3.2 EXPERIMENTAL
3.2.1 Materials
3.2.2 Preparation of the pristine sulfur electrode
2O3 incorporated composite film and the sealed sulfur electrode"> 3.2.3 Preparation of the nano-Al2O3 incorporated composite film and the sealed sulfur electrode
3.2.4 Cell assembly
3.2.5 Electrochemical measurements
2O3 incorporated composite film"> 3.2.6 Estimation of the electrochemical double layer capacitance (EDLC) of the nano-Al2O3 incorporated composite film
3.2.7 Materials characterization
3.3 RESULTS AND DISCUSSION
3.3.1 XRD and TGA results
3.3.2 Comparison of battery performances
3.3.3 Electrochemical measurements of the cell with sealed sulfur electrode
3.3.4 Revealing the blocking effect of the sealed configuration
3.3.5 Insights into the sealing strategy
3.4 CONCLUSIONS
CHAPTER 4 IMPROVED CYCLING STABILITY OF SULFUR ELECTRODE BY A LI-NAFION-SUPPORTED SEALED CONFIGURATION
4.1 INTRODUCTION
4.2 EXPERIMENTAL
4.2.1 Materials
4.2.2 Preparation of the lithiated Nafion membrane and H-type Nafion membrane
4.2.3 Preparation of the pristine sulfur electrode
4.2.4 Preparation of the Li-Nafion-supported composite film and the Li-Nafion-sealed sulfur electrode
4.2.5 Cell assembly
4.2.6 Characterizations and measurements
4.3 RESULTS AND DISCUSSION
4.3.1 FTIR spectra comparison between the casted H-type Nafion and Li-Nafion membranes
4.3.2 Measuring the lithium ion transference number of the casted Li-Nafion membrane
4.3.3 Morphology and element distribution of the Li-Nafion-supported composite film
4.3.4 The physical characterizations of the sulfur cathode material
4.3.5 Measuring the electrochemical double layer capacitance (EDLC)
4.3.6 The electrochemical performance of the batteries
2O3-supported sealed configuration"> 4.3.7 Comparison of the cycling performances at 0.1 C between the Li-Nafion-supported and nano-Al2O3-supported sealed configuration
4.4 CONCLUSIONS
CHAPTER 5 A SAFE AND LONG LIFE LITHIUM METAL-SULFUR BATTERY ENABLED BY A SINGLE ION CONDUCTING BATTERY STRUCTURE
5.1 INTRODUCTION
5.2 EXPERIMENTAL
5.2.1 Materials
5.2.2 Synthesis
5.2.3 Preparation
5.2.4 Cells assemblies
5.2.5 Characterizations and measurements
5.3 RESULTS AND DISCUSSION
5.3.1 Structural analyses of precursors and grafted polymer
5.3.2 Structural analyses of S@PAN
5.3.3 Physical & Electrochemical properties of the blend polymer electrolyte membrane
5.3.4 "Li | electrolyte | Li" cells for galvanostatic cycling tests
5.4 CONCLUSIONS
CHAPTER 6 CONCLUSIONS
ACKNOWLEDGEMENTS
REFERENCES
本文編號:2909696
本文鏈接:http://sikaile.net/kejilunwen/dianlidianqilunwen/2909696.html
最近更新
教材專著