天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當前位置:主頁 > 科技論文 > 電氣論文 >

基于大數據分析的風電場故障預警

發(fā)布時間:2019-06-28 14:41
【摘要】:傳統(tǒng)的風機故障預警一般通過設定單一變量的恒定預警閾值來實現,但在實際復雜工況下,這種方法易導致故障誤報、不報或預留排查時間不足。在不同的環(huán)境溫度下,風機的運行狀況不完全相同,并網發(fā)電量、并網功率、各部件溫度也不盡相同,僅依靠恒定預警值無法滿足復雜多變的工況下的預警要求。針對此問題,本文提出一種基于大數據分析的風機群落中異常風機的識別和故障預警方法。通過對河北赤沽地區(qū)某大型風電場中所有風機運行狀況的研究,并結合現場SCADA系統(tǒng)中相關歷史數據的整理分析,采用聚類分析的方法對風場中運行工況相似的風機進行群落劃分。采用統(tǒng)計學原理,對每一個群落中風機溫度類參數進行箱式分布,依據箱式圖中離群點的分布特性識別出群落中表現為離群特性的風機。在此基礎上采用顯著性差異分析方法對離群風機進行異常顯著性判斷,識別出異常運行的離群風機。為排除偶然因素造成的干擾,采用滑動窗口異常率統(tǒng)計分析方法消除風電機組奇異點的干擾,實現了風機群落中異常風機的識別。在hadoop大數據分析平臺中采用“分布式存儲、并行式計算”的方法對整個風場進行分析,實現所有群落中異常風機地識別。為進一步預測異常風機的變化特性,采用線性回歸分析方法對異常風機正常歷史數據進行建模,采用實時數據對模型進行殘差預測。結合現場經驗設置合理的預測殘差預警閾值,從而實現異常風機的故障預警。
[Abstract]:The traditional fan fault early warning is usually realized by setting a constant early warning threshold of a single variable, but under the actual complex working conditions, this method is easy to lead to false alarm of the fault, and there is not enough time to report or reserve the check. At different ambient temperatures, the operation status of the fan is not exactly the same, grid-connected power, the temperature of each component is not the same, only rely on constant early warning value can not meet the requirements of early warning under complex and changeable working conditions. In order to solve this problem, this paper presents a method of identification and fault early warning of abnormal fans in fan community based on big data analysis. Based on the study of the operation status of all the fans in a large wind farm in Chigu area of Hebei Province, and combined with the collation and analysis of the relevant historical data in the field SCADA system, the fan community with similar operating conditions in the wind field is divided by cluster analysis. Based on the statistical principle, the fan temperature parameters in each community are distributed in the box, and the fans with outlier characteristics in the community are identified according to the distribution characteristics of the outliers in the box diagram. On this basis, the significance difference analysis method is used to judge the abnormal significance of the outlier fan, and the abnormal operation of the outlier fan is identified. In order to eliminate the interference caused by accidental factors, the statistical analysis method of abnormal rate of sliding window is used to eliminate the interference of singularity of wind turbine, and the identification of abnormal fan in fan community is realized. In hadoop big data analysis platform, the method of "distributed storage and parallel calculation" is used to analyze the whole wind field, and the identification of abnormal fan in all communities is realized. In order to further predict the variation characteristics of abnormal fan, linear regression analysis method is used to model the normal history data of abnormal fan, and real-time data are used to predict the residual error of the model. Combined with the field experience, a reasonable prediction residual early warning threshold is set to realize the fault early warning of abnormal fan.
【學位授予單位】:華北電力大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:TP311.13;TM614

【參考文獻】

相關期刊論文 前10條

1 郭鵬;姜漫利;李航濤;;基于運行數據和高斯過程回歸的風電機組發(fā)電性能分析與監(jiān)測[J];電力自動化設備;2016年08期

2 魏書榮;何之倬;唐征歧;周杰;;海上風電機組的在線監(jiān)測與故障預警[J];上海電力學院學報;2014年06期

3 盧建昌;樊圍國;;大數據時代下數據挖掘技術在電力企業(yè)中的應用[J];廣東電力;2014年09期

4 顧煜炯;蘇璐瑋;鐘陽;徐婷;;基于區(qū)間劃分的風電齒輪箱在線故障預警方法[J];電力科學與工程;2014年08期

5 孫翔;何文林;邱煒;李晨;;基于顯著性差異的油浸倒置式電流互感器氫氣閾值分析[J];浙江電力;2014年06期

6 李輝;楊超;李學偉;季海婷;秦星;陳耀君;楊東;唐顯虎;;風機電動變槳系統(tǒng)狀態(tài)特征參量挖掘及異常識別[J];中國電機工程學報;2014年12期

7 童超;郭鵬;;基于特征選擇和BP神經網絡的風電機組故障分類監(jiān)測研究[J];動力工程學報;2014年04期

8 王珊;蘇璐瑋;顧煜炯;楊昆;;變工況特性下的風電軸承早期故障診斷方法[J];電力科學與工程;2014年03期

9 孫建平;朱雯;翟永杰;葛建宏;;基于MSET方法的風電機組齒輪箱預警仿真研究[J];系統(tǒng)仿真學報;2013年12期

10 許駿龍;李征;;基于支持向量機的風電機組故障預警[J];工業(yè)控制計算機;2013年08期

相關碩士學位論文 前2條

1 張小田;基于回歸分析的風機主要部件的故障預測方法研究[D];華北電力大學;2013年

2 李若昭;風電機組綜合性能評估與運行特性分析[D];華北電力大學(北京);2009年



本文編號:2507373

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/dianlidianqilunwen/2507373.html


Copyright(c)文論論文網All Rights Reserved | 網站地圖 |

版權申明:資料由用戶a3f61***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com