云環(huán)境下大規(guī)模配電網(wǎng)分布式最優(yōu)潮流計算研究
[Abstract]:By arranging a large number of sensors and data acquisition devices, smart grid can improve the ability of collecting and monitoring the related data of power grid in real time, so as to realize intelligent transmission and distribution, which is the inevitable trend of power grid development in the future. However, the operation of smart grid has brought about the explosive growth of the amount of data collected, with the characteristics of big data. At present, in the optimal power flow calculation of large-scale power grid, when the traditional calculation method faces the power system data with big data characteristics, the calculation speed is slow and the task execution efficiency is low, so it is difficult to meet the real-time computing requirements of smart grid, while most of the existing parallel computing methods run on special parallel computers, and the performance and price are relatively low. Therefore, how to realize the optimal power flow calculation quickly with high performance-price ratio has become an important problem to be solved in the development of smart grid. In this paper, the distributed parallel computing method for optimal power flow of large-scale distribution network in cloud environment is studied. With the help of Map-Reduce distributed parallel programming framework, the proposed method can run on Hadoop clusters with high performance and price. Specifically, this paper first proposes an optimal power flow algorithm performance model for Map-Reduce framework. The model can analyze and quantify the execution time of the algorithm under different cluster configurations, and provide guidance for the decomposition and calculation granularity of the power grid in the algorithm. Based on this performance model, a load balancing algorithm for optimal power flow calculation is proposed in this paper. In the case of given cluster resources, the optimal algorithm decomposition method and computational granularity are determined by simulated annealing algorithm, and the load balancing is realized by feeder reorganization algorithm, so as to optimize the computing speed and efficiency of optimal power flow in cloud environment. In the aspect of experiment, the proposed method is compared with the traditional serial optimal power flow calculation. The experimental results show that the proposed method can reduce the computing time by 68.3% compared with the serial method. At the same time, the calculation time of the optimal power flow algorithm under load balancing and imbalance is verified. The experimental data show that compared with the load imbalance method, the load balancing algorithm proposed in this paper can reduce the calculation time of the optimal power flow by 43.7%.
【學(xué)位授予單位】:華北電力大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TM744
【參考文獻】
相關(guān)期刊論文 前10條
1 傅志生;白曉清;李佩杰;韋化;;一種快速求解大規(guī)模安全約束最優(yōu)潮流的多核并行方法[J];電力系統(tǒng)保護與控制;2015年03期
2 張東霞;苗新;劉麗平;張焰;劉科研;;智能電網(wǎng)大數(shù)據(jù)技術(shù)發(fā)展研究[J];中國電機工程學(xué)報;2015年01期
3 彭小圣;鄧迪元;程時杰;文勁宇;李朝暉;牛林;;面向智能電網(wǎng)應(yīng)用的電力大數(shù)據(jù)關(guān)鍵技術(shù)[J];中國電機工程學(xué)報;2015年03期
4 梅華威;米增強;吳廣磊;;基于MapReduce模型的間歇性能源海量數(shù)據(jù)處理技術(shù)[J];電力系統(tǒng)自動化;2014年15期
5 宋亞奇;周國亮;朱永利;;智能電網(wǎng)大數(shù)據(jù)處理技術(shù)現(xiàn)狀與挑戰(zhàn)[J];電網(wǎng)技術(shù);2013年04期
6 郭燁;吳文傳;張伯明;孫宏斌;;極坐標下含零注入約束的電力系統(tǒng)狀態(tài)估計的修正牛頓法與快速解耦估計[J];中國電機工程學(xué)報;2012年22期
7 張曉洲;;云計算關(guān)鍵技術(shù)及發(fā)展現(xiàn)狀研究[J];網(wǎng)絡(luò)與信息;2011年09期
8 夏俊峰;楊帆;李靜;鄭秀玉;;基于GPU的電力系統(tǒng)并行潮流計算的實現(xiàn)[J];電力系統(tǒng)保護與控制;2010年18期
9 謝開貴;張懷勛;胡博;曹侃;吳韜;;大規(guī)模電力系統(tǒng)潮流計算的分布式GESP算法[J];電工技術(shù)學(xué)報;2010年06期
10 陳穎;沈沉;梅生偉;盧強;;基于改進Jacobian-Free Newton-GMRES(m)的電力系統(tǒng)分布式潮流計算[J];電力系統(tǒng)自動化;2006年09期
相關(guān)碩士學(xué)位論文 前3條
1 王淑祥;基于Hadoop的海量電能質(zhì)量數(shù)據(jù)云計算平臺研究[D];華北電力大學(xué);2014年
2 馮懿;基于云計算的電力系統(tǒng)不良數(shù)據(jù)辨識算法研究[D];南京理工大學(xué);2013年
3 梁陽豆;CUDA平臺下的電力系統(tǒng)最優(yōu)潮流并行計算研究[D];廣西大學(xué);2012年
,本文編號:2499380
本文鏈接:http://sikaile.net/kejilunwen/dianlidianqilunwen/2499380.html