復(fù)雜背景下儀表指針示數(shù)的識(shí)別與研究
[Abstract]:With the rapid development of intelligent power system in our country, the demand of power automation and unattended is becoming more and more urgent. As a measuring tool to indicate the state of power environment, pointer instrument widely exists in power plant. Due to the manual interpretation of the pointer instrument, there will be low efficiency, large error and so on. In view of this phenomenon, this paper studies and designs the instrument pointer indication recognition system under the complex background. The instrument of power plant is interpreted by machine instead of human, so as to improve the working efficiency and reduce the error rate. Based on the deep understanding of the characteristics and structure of the pointer instrument and the advanced technology in the field of artificial intelligence, this paper analyzes the instrument shape, instrument pointer and dial number and other related components. This paper presents a method of accurate instrument positioning based on Adaboost classifier. this method can effectively solve the problem of instrument positioning caused by complex environment of substation, and has higher stability and robustness than Hough transform instrument positioning. In this paper, Sift algorithm is used to locate the numbers in rotating dial and inclined dial correctly, Hough line detection is used to extract instrument pointer, and the current indication number of pointer is interpreted according to the calculation formula of plane vector angle. In the research and design of pointer instrument, according to the detection results of Sift algorithm, a feature region location method based on clustering algorithm is proposed in this paper. According to the principle of plane clustering, this method can locate the densest area of Sift matching points, and realize the efficient location of dial numbers. In the research process of instrument pointer extraction, this paper proposes a pointer relocation method based on local center position, which realizes pointer position relocation by using Hough detection results through the position relationship between pointer and dial center. Then the instrument pointer is extracted more accurately. In the design structure, the handheld terminal is used to collect the field information, and the server is used to process the collected image information. According to the actual demand, the instrument pointer identification system is realized, and the accurate interpretation of COMPOUND GAUGE (vacuum pressure) instrument pointer indication is completed.
【學(xué)位授予單位】:山東理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類(lèi)號(hào)】:TP391.41;TM62
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 許佳佳;;結(jié)合Harris與SIFT算子的圖像快速配準(zhǔn)算法[J];中國(guó)光學(xué);2015年04期
2 宋曉宇;郭寒冰;袁帥;馬俊俊;;基于自適應(yīng)閾值區(qū)間的動(dòng)態(tài)采樣Hough變換直線(xiàn)檢測(cè)算法[J];沈陽(yáng)建筑大學(xué)學(xué)報(bào)(自然科學(xué)版);2014年05期
3 江偉堅(jiān);郭躬德;賴(lài)智銘;;基于新Haar-like特征的Adaboost人臉檢測(cè)算法[J];山東大學(xué)學(xué)報(bào)(工學(xué)版);2014年02期
4 顏雪軍;趙春霞;袁夏;;2DPCA-SIFT:一種有效的局部特征描述方法[J];自動(dòng)化學(xué)報(bào);2014年04期
5 戴金波;趙宏偉;劉君玲;馮嘉;;一種針對(duì)于描述子的SIFT簡(jiǎn)化方法[J];儀器儀表學(xué)報(bào);2012年10期
6 李俊山;馬穎;趙方舟;郭莉莎;;改進(jìn)的Canny圖像邊緣檢測(cè)算法[J];光子學(xué)報(bào);2011年S1期
7 張向榮;騫曉雪;焦李成;;基于免疫譜聚類(lèi)的圖像分割[J];軟件學(xué)報(bào);2010年09期
8 韓非;郭燕玲;李志鵬;;區(qū)分上下邊緣的Hough變換直線(xiàn)改進(jìn)算法[J];計(jì)算機(jī)應(yīng)用;2010年S1期
9 張瑩;王耀南;;基于局部加權(quán)偏最小二乘法的冷凝器污垢預(yù)測(cè)[J];儀器儀表學(xué)報(bào);2010年02期
10 鄭永斌;黃新生;豐松江;;SIFT和旋轉(zhuǎn)不變LBP相結(jié)合的圖像匹配算法[J];計(jì)算機(jī)輔助設(shè)計(jì)與圖形學(xué)學(xué)報(bào);2010年02期
相關(guān)博士學(xué)位論文 前2條
1 劉春生;復(fù)雜大背景下交通標(biāo)志快速魯棒的檢測(cè)和識(shí)別研究[D];山東大學(xué);2016年
2 王晶晶;復(fù)雜擁擠環(huán)境下協(xié)同視頻監(jiān)控中目標(biāo)跟蹤算法研究[D];中國(guó)科學(xué)技術(shù)大學(xué);2016年
相關(guān)碩士學(xué)位論文 前3條
1 劉文振;基于HOG特征的行人檢測(cè)系統(tǒng)的研究[D];南京郵電大學(xué);2016年
2 孫浩晏;基于機(jī)器視覺(jué)的指針式儀表讀數(shù)識(shí)別系統(tǒng)研究[D];吉林大學(xué);2015年
3 晁陽(yáng);基于特征識(shí)別的指針式儀表自動(dòng)識(shí)別研究[D];山東大學(xué);2008年
,本文編號(hào):2490791
本文鏈接:http://sikaile.net/kejilunwen/dianlidianqilunwen/2490791.html