高低風(fēng)速下大規(guī)模風(fēng)電場(chǎng)功率爬坡有限度控制策略研究
[Abstract]:With the rapid development of the global economy, the demand for electricity and the requirements for energy conservation and emission reduction are increasing day by day. Wind energy, as one of the most commercially valuable renewable energy sources, has been paid more and more attention by many countries. As a typical event of wind power uncertainty and volatility, wind farm power climbing has a great impact on the stability of power grid. Taking the power climbing event of large-scale wind farm as the research object, this paper studies the optimal control strategy of large-scale wind farm power climbing. The main research work is as follows: the basic theory of wind turbine technology is briefly described. The mathematical model of doubly-fed induction wind turbine and the mathematical model of wind farm are established. Aiming at the power climbing process of wind farm without cutting machine under low wind speed, an optimal control strategy for wind farm power climbing under low wind speed is proposed. The power climbing curve of wind farm is optimized by using the genetic algorithm with elite strategy, and the power reference curve is obtained, which takes into account both the climbing rate and the abandoned air volume. Through the feedback control mode of doubly-fed induction generator converter and variable pitch angle, the output power curve of wind farm can track the reference curve. A simulation example is carried out in MATLAB/Simulink environment to verify the effectiveness and superiority of the power climbing control strategy for wind farm under the condition of low wind speed. Aiming at the power climbing process of wind farm with cutting machine under high wind speed, an optimal control strategy for wind farm power climbing process with cutting machine under high wind speed is proposed in this paper. The undominated sorting genetic algorithm with elite strategy is used to optimize the power climbing curve, and the reference curve of cutting process is obtained. According to the different wind speed characteristics and failure rate of each unit in the wind farm, the priority coefficient of the pre-cutting machine is put forward for the first time, and the cutting time node of each fan is calculated at the same time. According to the order of the priority coefficient and the time node, The output power curve of the wind farm as a whole tracks the optimized reference curve in order to reduce the sharp fluctuation of the power caused by the cutting of the wind turbine under high wind speed. Using RTDS real-time simulation platform and DSP physical controller, a semi-physical simulation system is built and semi-physical experiments are carried out. The experimental results verify the correctness and effectiveness of the control strategy proposed in this paper.
【學(xué)位授予單位】:上海電機(jī)學(xué)院
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TM614
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 韓兵;周臘吾;陳浩;鄧寧峰;田猛;;基于RBF神經(jīng)網(wǎng)絡(luò)的風(fēng)電機(jī)組獨(dú)立變槳控制[J];中國(guó)科學(xué):技術(shù)科學(xué);2016年03期
2 杜彬;王致杰;劉三明;朱紅英;王東偉;黃麒元;;基于分段優(yōu)化的風(fēng)電功率爬坡有限度控制策略[J];電力系統(tǒng)自動(dòng)化;2016年05期
3 劉穎明;徐中民;王曉東;;基于雙模糊算法的風(fēng)電機(jī)組儲(chǔ)能系統(tǒng)優(yōu)化控制[J];高電壓技術(shù);2015年07期
4 燕妮;齊蓓;蔣程;;考慮多因素影響的風(fēng)電機(jī)組故障率計(jì)算方法[J];電氣應(yīng)用;2015年09期
5 歐陽(yáng)庭輝;查曉明;秦亮;熊一;朱小帆;;風(fēng)電功率爬坡事件預(yù)測(cè)時(shí)間窗口的選取[J];電網(wǎng)技術(shù);2015年02期
6 夏雪;戚永志;劉玉田;;風(fēng)機(jī)爬坡功率的有限度控制策略[J];電力系統(tǒng)自動(dòng)化;2014年20期
7 戚永志;劉玉田;;基于競(jìng)爭(zhēng)博弈的風(fēng)電爬坡協(xié)同控制策略[J];中國(guó)電機(jī)工程學(xué)報(bào);2014年25期
8 崔明建;孫元章;柯德平;;基于原子稀疏分解和BP神經(jīng)網(wǎng)絡(luò)的風(fēng)電功率爬坡事件預(yù)測(cè)[J];電力系統(tǒng)自動(dòng)化;2014年12期
9 張伯明;陳建華;吳文傳;;大規(guī)模風(fēng)電接入電網(wǎng)的有功分層模型預(yù)測(cè)控制方法[J];電力系統(tǒng)自動(dòng)化;2014年09期
10 崔明建;孫元章;柯德平;羅超;;考慮電網(wǎng)側(cè)頻率偏差的風(fēng)電功率爬坡事件預(yù)測(cè)方法[J];電力系統(tǒng)自動(dòng)化;2014年05期
相關(guān)博士學(xué)位論文 前1條
1 賈旭東;基于RTDS的交直流系統(tǒng)實(shí)時(shí)數(shù)字仿真方法研究與實(shí)現(xiàn)[D];華北電力大學(xué)(河北);2009年
相關(guān)碩士學(xué)位論文 前6條
1 王永翔;大型風(fēng)電場(chǎng)短期風(fēng)電功率預(yù)測(cè)技術(shù)研究[D];上海電機(jī)學(xué)院;2016年
2 孫承祥;雙饋型風(fēng)電機(jī)組的風(fēng)電場(chǎng)建模研究[D];華北電力大學(xué);2015年
3 黎延海;基于粒子群優(yōu)化與差分進(jìn)化混合算法的多目標(biāo)優(yōu)化及應(yīng)用[D];西安石油大學(xué);2014年
4 夏雪;大規(guī)模風(fēng)電爬坡風(fēng)機(jī)功率有限度控制研究[D];山東大學(xué);2014年
5 高媛;非支配排序遺傳算法(NSGA)的研究與應(yīng)用[D];浙江大學(xué);2006年
6 孫建鋒;風(fēng)電場(chǎng)建模和仿真研究[D];清華大學(xué);2004年
,本文編號(hào):2474529
本文鏈接:http://sikaile.net/kejilunwen/dianlidianqilunwen/2474529.html