基于logistic組合模型的城市電力飽和負(fù)荷預(yù)測(cè)研究
[Abstract]:The growth of electric power load has the same trend with the development of economy and society, and it has different characteristics in different stages of economic and social development. When economic and social development reaches a certain stage, under the constraints of regional energy structure, land resources, population size and environmental pressure, the growth rate of electric power load will slow down or even stop growing. Gradually enter the saturated development stage of power load. The power saturation load can determine the final scale of power grid development in urban power grid planning, provide the basic data for the long-term planning of power supply point, transmission grid and distribution network, and then guide the construction and transformation of urban power grid in the near future. Avoid unnecessary reconstruction and expansion projects, reserve space for the future development of urban electricity, and ensure coordination between urban planning and power grid development. Based on the analysis of the law of power load development in typical developed regions and countries, this paper summarizes the development process of power load and its socio-economic characteristics in the stage of saturation load. Furthermore, the quantitative index system for judging the power load entering the saturation stage is improved, and the methods and characteristics of the commonly used saturated load forecasting models are introduced and summarized at the same time. Based on the analysis of economic, social, population, resource, policy, environment and other factors which are closely related to the development of electric power, the consciousness model of influencing factors of electric power load is established. The structural relationship among the factors is analyzed by using the interpretive structural model. The factors influencing the change of power load are divided into three levels: surface layer, shallow layer and deep layer. Considering the characteristics of the traditional logistic model, the grey logistic model of the extreme difference scheme is established by using the exact range scheme of the grey model, which avoids the subjectivity of the parameters in the traditional prediction model. Considering the surface factors that have a direct effect on the change of power load, the speed growth factor in logistic forecasting model is functioned by the neural network model optimized by PSO, and the logistic expansion model is established. Then the logistic combination forecasting model is established by variance-covariance and deviation to avoid the shortcomings of single prediction and to enhance the practicability and flexibility of the model and to improve the prediction accuracy. Finally, the development of economy, population and electricity in Beijing is analyzed. Based on historical data, the future demand for electricity consumption in Beijing is predicted. The results show that from 2026 to 2027, the annual growth rate of electricity demand in Beijing will be less than 2%. Total electricity demand reached 1331.68- one hundred and thirty five billion ninety one million kilowatt-hours, entering the stage of saturation development.
【學(xué)位授予單位】:華北電力大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TM715
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 高崇;唐瀟;左鄭敏;朱向前;歐陽(yáng)旭;姚建剛;;投影梯度法模糊層次綜合評(píng)價(jià)模型在飽和負(fù)荷分析中的應(yīng)用[J];電力需求側(cè)管理;2015年06期
2 張帆;劉杰鋒;李冰;陳綱亮;季節(jié);徐康泰;;基于改進(jìn)Logistic模型階段劃分理論的飽和負(fù)荷預(yù)測(cè)[J];電力建設(shè);2015年10期
3 林勇;鄒品晶;左鄭敏;歐陽(yáng)旭;朱向前;姚建剛;;基于改進(jìn)PSO算法的Logistic模型在飽和負(fù)荷預(yù)測(cè)中的應(yīng)用[J];電力需求側(cè)管理;2015年05期
4 趙會(huì)茹;周佳;李娜娜;韓新陽(yáng);霍慧娟;薛萬(wàn)磊;;滾動(dòng)多維度城市飽和負(fù)荷預(yù)測(cè)研究[J];中國(guó)電力;2015年03期
5 劉杰鋒;程浩忠;韓新陽(yáng);尤鐘曉;楊宗麟;;多維度飽和負(fù)荷預(yù)測(cè)方法及其應(yīng)用[J];電力系統(tǒng)及其自動(dòng)化學(xué)報(bào);2015年02期
6 崔和瑞;彭旭;;基于ARIMAX模型的夏季短期電力負(fù)荷預(yù)測(cè)[J];電力系統(tǒng)保護(hù)與控制;2015年04期
7 尚芳屹;楊宗麟;程浩忠;辛潔晴;顧潔;;改進(jìn)Verhulst模型在飽和負(fù)荷預(yù)測(cè)中的應(yīng)用[J];電力系統(tǒng)及其自動(dòng)化學(xué)報(bào);2015年01期
8 何耀耀;聞才喜;許啟發(fā);撖奧洋;;考慮溫度因素的中期電力負(fù)荷概率密度預(yù)測(cè)方法[J];電網(wǎng)技術(shù);2015年01期
9 肖欣;周渝慧;張寧;韓新陽(yáng);薛萬(wàn)磊;尹立;唐鑫;;城市電力飽和負(fù)荷分析技術(shù)及其應(yīng)用研究綜述[J];電力自動(dòng)化設(shè)備;2014年06期
10 何洋;鄒波;李文啟;文福拴;劉偉佳;;基于混沌理論的電力系統(tǒng)短期負(fù)荷預(yù)測(cè)的局域模型[J];華北電力大學(xué)學(xué)報(bào)(自然科學(xué)版);2013年04期
相關(guān)博士學(xué)位論文 前1條
1 涂娟娟;PSO優(yōu)化神經(jīng)網(wǎng)絡(luò)算法的研究及其應(yīng)用[D];江蘇大學(xué);2013年
,本文編號(hào):2460756
本文鏈接:http://sikaile.net/kejilunwen/dianlidianqilunwen/2460756.html