家用電器負(fù)荷在線參數(shù)辨識(shí)方法的研究
[Abstract]:Load monitoring is the basis for obtaining users' detailed electricity consumption situation, power consumption behavior and energy saving work. Power supply enterprises make reasonable demand response strategies by analyzing user behavior, and guide users to use electricity correctly. In order to ensure the stability and economy of power supply, users can reasonably arrange their own power consumption and reduce energy consumption and expenditure by understanding the power supply situation, power grid policies and their own accurate power consumption information. The non-intrusive load monitoring method only needs to install the information collection device at the power entrance of the monitored system, and use the appropriate algorithm to process and analyze the power consumption data, so that the power consumption information of each load in the system can be obtained. It effectively solves the problems of difficult installation, maintenance and management of monitoring equipment, which is the development direction of load monitoring in the future. In this paper, a method of on-line parameter identification for household appliances under non-intrusive environment is studied. Starting with the load characteristics, the load switching identification, feature extraction and load classification identification are studied. The main work is as follows: (1) the research background and significance of on-line parameter identification method for household appliance load are described. This paper studies the current situation of load monitoring system and home appliance load feature extraction and classification at home and abroad, and studies the advantages, physical structure and working principle of non-intrusive load monitoring system based on smart grid methodology. (2) establish the hardware system of load collection, complete the collection of common household appliances single operation data and mixed operation data, analyze the characteristics of load electricity, take load current, voltage, active power, reactive power, high-order harmonic content, and make use of load current, voltage, active power, reactive power and high-order harmonic content. The multi-dimensional feature such as phase angle is a priori training sample, combined with load hardware structure, the unique characteristics of different loads are excavated. (3) the switching identification technology based on load switching state is studied. The load feature samples of eight typical electrical appliances are reduced by principal component analysis, the optimal identification characteristics are obtained, and a two-layer classifier is established according to the load evaluation value. The principal eigenvalue matrix of household appliances is deaggregated in one-dimensional space by Fisher supervised linear discriminant, and a classifier is established. In the experimental environment, the classifier is designed by using Matlab. (4) the on-line parameter identification system of household appliances is built with virtual instrument, which realizes the landing, electric energy monitoring, interrupt state monitoring, single load operation status display, and so on. Historical data query and communication functions make it more convenient and intuitive to demonstrate the load online parameter identification method proposed in this paper.
【學(xué)位授予單位】:華北電力大學(xué)(北京)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2016
【分類號(hào)】:TM925.06
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 蔣存波;劉麗;王聰;鐘凡;;一種溫度對(duì)象參數(shù)辨識(shí)方法及仿真研究[J];科學(xué)技術(shù)與工程;2009年11期
2 孫聞;孔祥玉;張科;張芳;楊群;;基于實(shí)測數(shù)據(jù)的發(fā)電機(jī)調(diào)速系統(tǒng)參數(shù)辨識(shí)方法[J];電力系統(tǒng)及其自動(dòng)化學(xué)報(bào);2014年03期
3 任章,嚴(yán)衛(wèi)生,徐德民;一種全并行神經(jīng)網(wǎng)絡(luò)參數(shù)辨識(shí)方法[J];西北工業(yè)大學(xué)學(xué)報(bào);1997年02期
4 孫澤昌;魏學(xué)哲;王曉宇;黎燕航;;一種采用參數(shù)調(diào)整學(xué)習(xí)的感應(yīng)電機(jī)轉(zhuǎn)子參數(shù)辨識(shí)方法[J];電氣自動(dòng)化;1998年01期
5 王洪瑞;宋維公;馬淑芬;;一種實(shí)用的直流機(jī)參數(shù)辨識(shí)方法[J];電氣傳動(dòng);1990年01期
6 孫建平;閆永躍;于樹新;李慶周;;時(shí)滯時(shí)變對(duì)象參數(shù)辨識(shí)方法[J];電光與控制;2008年01期
7 李永軍;馬立元;王天輝;段永剛;;一種高階累積量的模態(tài)參數(shù)辨識(shí)方法改進(jìn)及其應(yīng)用[J];海軍工程大學(xué)學(xué)報(bào);2012年01期
8 管秀鵬;孫元章;程林;;基于綜合廣域信息的負(fù)荷參數(shù)辨識(shí)方法[J];電力自動(dòng)化設(shè)備;2009年01期
9 徐亞卿;李永軍;王天輝;李世龍;;高階累積量的子空間模態(tài)參數(shù)辨識(shí)方法研究[J];機(jī)械與電子;2012年01期
10 吳曉新;阮毅;;異步電機(jī)參數(shù)辨識(shí)方法的研究[J];南通紡織職業(yè)技術(shù)學(xué)院學(xué)報(bào);2005年04期
相關(guān)博士學(xué)位論文 前3條
1 韓放;葉片—轉(zhuǎn)子系統(tǒng)振動(dòng)特性與參數(shù)辨識(shí)方法研究[D];大連理工大學(xué);2013年
2 楊凱;僅利用輸出響應(yīng)的時(shí)變模態(tài)參數(shù)辨識(shí)方法研究[D];哈爾濱工業(yè)大學(xué);2014年
3 樊江玲;基于輸出響應(yīng)的模態(tài)參數(shù)辨識(shí)方法研究[D];上海交通大學(xué);2007年
相關(guān)碩士學(xué)位論文 前10條
1 付嬋君;非對(duì)稱遲滯建模與遲滯系統(tǒng)辨識(shí)方法研究[D];華僑大學(xué);2016年
2 程媛;家用電器負(fù)荷在線參數(shù)辨識(shí)方法的研究[D];華北電力大學(xué)(北京);2016年
3 王曉丹;火箭充液貯箱振動(dòng)特性的時(shí)變模態(tài)參數(shù)辨識(shí)方法研究[D];哈爾濱工業(yè)大學(xué);2013年
4 叢雨;氣動(dòng)執(zhí)行閥粘滯特性建模與參數(shù)辨識(shí)方法研究[D];浙江大學(xué);2010年
5 張杰;一種應(yīng)用于汽輪機(jī)及其調(diào)節(jié)系統(tǒng)的智能尋優(yōu)參數(shù)辨識(shí)方法[D];重慶大學(xué);2014年
6 王詩彬;瞬態(tài)成分建模與參數(shù)辨識(shí)方法及其旋轉(zhuǎn)機(jī)械故障診斷應(yīng)用研究[D];蘇州大學(xué);2011年
7 張鎮(zhèn);未知激勵(lì)下的模態(tài)參數(shù)辨識(shí)技術(shù)研究[D];南京航空航天大學(xué);2009年
8 邱衛(wèi)萍;加性噪聲指數(shù)模型的參數(shù)辨識(shí)方法及在油田上的應(yīng)用[D];吉林大學(xué);2005年
9 趙歆;感應(yīng)電動(dòng)機(jī)離線參數(shù)辨識(shí)方法研究[D];重慶大學(xué);2008年
10 楊瑞賡;一類Hammerstein模型的參數(shù)辨識(shí)方法研究[D];北京化工大學(xué);2014年
,本文編號(hào):2452408
本文鏈接:http://sikaile.net/kejilunwen/dianlidianqilunwen/2452408.html