MH-Ni動力電池的建模與SOC估算
[Abstract]:With the aggravation of the energy crisis and the environmental problems caused by the emission of pollution gases from fuel vehicles, electric vehicles have been paid more and more attention by many countries for their advantages of zero pollution, high efficiency and low noise. As a kind of energy storage equipment with high specific energy, high specific power, long cycle life and low pollution, Ni-MH battery has become one of the main choice objects in the power energy selection of new energy electric vehicles and hybrid electric vehicles. In this paper, nickel-hydrogen power battery as the research object, explore the way to improve the accuracy of SOC estimation. In view of the fact that the open circuit voltage of Ni-MH battery is greatly affected by polarization, an extended Kalman filter (EKF) algorithm based on open-circuit voltage self-adjustment is proposed to estimate the state of charge (SOC) of Ni-MH battery, and good results are obtained. Firstly, the working principle of MH-Ni battery is introduced. The basic characteristics of the battery are obtained by the design experiment, and the factors affecting the SOC of the battery are analyzed. The equivalent circuit model of MH-Ni battery is established by selecting the first-order Thevenin model considering the battery characteristics and other factors. The HPPC cycle experiment is designed. The parameters of the battery model are identified by the recursive least square method of system identification, and the battery model is established in Matlab. The simulation verifies the feasibility of the battery model and modifies the open-circuit voltage parameters of the model. The modified model has a good follow-up to the test of the variable current condition and the terminal voltage. An extended Kalman filter (EKF) state-of-charge SOC estimation algorithm based on open-circuit voltage self-adjustment is proposed, which is more accurate in selecting open-circuit voltage and thus improves the accuracy of the whole algorithm. The charging model parameters and discharge model parameters are identified by HPPC experiment and discharge HPPC experiment. The SOC estimation is verified by extended Kalman filter algorithm for charging cycle and discharge cycle experiments. The results show that the accuracy of charging model parameters in charging cycle experiments is higher than that of discharge model parameters in discharge cycle experiments, but for variable current conditions, both model parameters are not high. For DST, the improved extended Kalman filter algorithm based on open-circuit voltage self-tuning is more accurate than that of charging model parameters and discharge model parameters.
【學位授予單位】:北方工業(yè)大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:TM912
【參考文獻】
相關(guān)期刊論文 前10條
1 胡秀芝;金鵬;萇瑞鋒;;基于Thevenin模型的氫鎳電池仿真[J];電源技術(shù);2014年11期
2 伍佳佳;趙又群;;基于Thevenin模型的混合動力鎳氫電池參數(shù)辨識[J];農(nóng)業(yè)裝備與車輛工程;2014年01期
3 朱浩;錢承;謝煜冰;李磊;;混合動力鎳氫動力電池參數(shù)辨識[J];湖南大學學報(自然科學版);2011年08期
4 熊瑞;何洪文;丁銀;;HEV用鋰離子電池動態(tài)模型參數(shù)辨識方法研究[J];電力電子技術(shù);2011年04期
5 李超;商安娜;;電動汽車用氫鎳電池二階RC模型的研究[J];電源技術(shù);2011年02期
6 蔡志輝;劉國繁;駱晶;;基于EXCEL的車用動力電池模型參數(shù)辨識研究[J];湖南工程學院學報(自然科學版);2010年04期
7 胡運飛;廖承林;王麗芳;;混合動力汽車用MH/Ni電池的建模[J];電池;2008年04期
8 王勝;李禮夫;;基于卡爾曼濾波的HEV電池剩余電量的估計[J];現(xiàn)代制造工程;2008年01期
9 馮旭云;魏學哲;朱軍;;MH/Ni電池等效電路模型的研究[J];電池;2007年04期
10 裴晟;陳全世;林成濤;;基于支持向量回歸的電池SOC估計方法研究[J];電源技術(shù);2007年03期
相關(guān)會議論文 前1條
1 魏婧雯;董廣忠;張陳斌;陳宗海;;電動汽車用動力電池數(shù)學模型研究綜述[A];系統(tǒng)仿真技術(shù)及其應用學術(shù)論文集(第15卷)[C];2014年
相關(guān)博士學位論文 前2條
1 高明煜;動力電池組SOC在線估計模型與方法研究[D];武漢理工大學;2013年
2 武國良;電動汽車用鎳氫電池剩余電量估計方法研究[D];哈爾濱工業(yè)大學;2010年
相關(guān)碩士學位論文 前9條
1 潘佰韜;鋰離子電池管理系統(tǒng)的設(shè)計與SOC估算研究[D];河北工業(yè)大學;2015年
2 胡秀芝;鋰離子電池管理系統(tǒng)的設(shè)計[D];北方工業(yè)大學;2014年
3 劉斌;鎳氫動力電池模型辨識與SOC估計方法研究[D];中南大學;2014年
4 薛輝;動力鋰離子電池組SOH估計方法研究[D];吉林大學;2013年
5 駱晶;MH/Ni動力電池SOC估算方法研究及實現(xiàn)[D];湘潭大學;2012年
6 劉浩;基于EKF的電動汽車用鋰離子電池SOC估算方法研究[D];北京交通大學;2010年
7 羅卓;鋰離子電池綜合使用性能的評價、修復及相關(guān)機理研究[D];中南大學;2009年
8 張術(shù);電動汽車電池管理系統(tǒng)軟件設(shè)計與SOC估算策略研究[D];天津大學;2007年
9 勞力;動力蓄電池管理系統(tǒng)SOC算法研究[D];北京交通大學;2007年
,本文編號:2431939
本文鏈接:http://sikaile.net/kejilunwen/dianlidianqilunwen/2431939.html