互聯(lián)雙機電力系統(tǒng)的混沌振蕩分析及其抑制方法研究
[Abstract]:Chaotic oscillation is a very complex phenomenon caused by the interaction of various parameters in nonlinear system. Power system is a typical nonlinear system. Chaotic oscillations will occur under the load of periodic disturbances or when the system parameters meet certain conditions. This kind of continuous and irregular oscillation may lead to the instability of the system and seriously endanger the safe operation of the system. Therefore, it is of fundamental significance and application value to analyze the mechanism and suppression strategy of chaotic oscillation in power system. Firstly, the mechanism characteristics and parameter conditions of chaotic oscillation in interconnected two-machine power system are analyzed and summarized in this paper. Secondly, the hyperbolic sliding mode controller with hyperbolic switching term is designed for the chaotic system, and the stability and convergence accuracy of the controller are analyzed and proved theoretically. Thirdly, based on the fractional order control theory, a fractional hyperbolic sliding mode controller is designed, and the theoretical stability of the controller is verified. Finally, the simulation experiments of interconnected two-machine power system with chaotic oscillation are carried out under the action of two kinds of controllers. The simulation results show that compared with the discontinuous switching term in the traditional sliding mode control, the continuous smooth hyperbolic switching term in the hyperbolic sliding mode controller can soften the output of the sliding mode controller and improve the "buffeting" phenomenon in the traditional sliding mode variable structure control. Through the design of fractional sliding mode surface and fractional hyperbolic switching term, the output stability of controller can be further improved and the system approach to sliding mode surface can be accelerated.
【學位授予單位】:西安理工大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:TM712
【參考文獻】
相關期刊論文 前10條
1 華艷秋;郭曉曉;張亮修;吳光強;;汽車空氣懸架非線性混沌分析[J];公路交通科技;2017年04期
2 徐琴;;混沌理論和極限學習機的物流需求預測模型[J];現(xiàn)代電子技術;2017年07期
3 賈諾;王濤;;Devaney定義下變換的拓撲和隨機性質的關系[J];純粹數(shù)學與應用數(shù)學;2017年01期
4 繆仲翠;巨梅;黨建武;張昊;韓天亮;;基于分數(shù)階滑模觀測器的感應電機速度估計[J];中國礦業(yè)大學學報;2016年06期
5 曹立偉;梁占紅;高金峰;;互聯(lián)電力系統(tǒng)的Adomian分解法求解及其混沌特性分析[J];電測與儀表;2016年21期
6 李保杰;李進波;李洪杰;何維晟;曾祥峰;虞春艷;;土耳其“3.31”大停電事故的分析及對我國電網安全運行的啟示[J];中國電機工程學報;2016年21期
7 厲天威;江巳彥;趙建華;羅兵;;南方電網沿海地區(qū)輸電線路風災事故分析[J];高壓電器;2016年06期
8 王建敏;董小萌;吳云潔;;高超聲速飛行器RBF神經網絡滑模變結構控制[J];電機與控制學報;2016年05期
9 于群;石良;曹娜;張敏;賀慶;易俊;;廣義極值理論在大停電事故損失負荷預測中的應用[J];電力系統(tǒng)自動化;2016年08期
10 李姍姍;趙春娜;關永;施智平;王瑞;李曉娟;葉世偉;;分數(shù)階微積分定義的一致性在HOL4中的驗證[J];計算機科學;2016年03期
,本文編號:2391138
本文鏈接:http://sikaile.net/kejilunwen/dianlidianqilunwen/2391138.html