中低壓配電網(wǎng)饋線負(fù)荷時(shí)空分布特性研究
[Abstract]:In recent years, due to the development of agricultural modernization in rural areas, the power supply capacity of the medium and low voltage distribution network has been increasing greatly, and the power supply capacity of the medium and low voltage distribution network is gradually unable to adapt to the increasing demand for electricity, which often leads to problems in the operation of feeder lines of the medium and low voltage distribution networks. Among them, the problem of low voltage is particularly prominent. The busbar voltage in medium and low voltage distribution network is mainly controlled by the higher power network, but the load variation characteristics of the station area have little effect on it. However, the feeder voltage of medium and low voltage distribution network is different, because of the comprehensive influence of the objective factors of different geographical location of load and the varying law of load time, the voltage along the feeder line changes greatly. At present, the research on the side load characteristics of the distribution network substation has achieved good results, but the load characteristics of different stations in the feeder are relatively small. In this paper, the current situation of feeder of medium and low voltage distribution network in Xishuangbanna area is studied. The load modeling of measured data is carried out by using voltage monitoring data and power monitoring data collected in metering automation system. The problems in feeder of medium and low voltage distribution network are studied. Taking the low voltage problem in the medium and low voltage distribution network in Xishuangbanna area as an example, the statistical data of various monitoring points in this area are combed and analyzed, and the main areas and time periods of the low voltage problems are sorted out. Firstly, the cleaning method of data collected by measurement automation is studied, and the method of bidirectional comparison is used to repair the data. Secondly, the clustering method after data repair is studied, and the data after restoration is smoothed and normalized. According to the difference of electricity consumption behavior between the public variable load and the special variable load in the life period, the special variable load is higher in the working period. The daily load curves of different types of users are obtained, and the K-means clustering algorithm is used to classify the load based on the cluster pattern which is similar in shape and distance between clusters, so as to master the load characteristics in this area. Finally, according to the load characteristics, a method to analyze the low voltage problem of the medium and low voltage distribution network based on the measured load data is proposed. The simulation system is built according to the feeder line of the distribution network to be analyzed, and the load modeling is carried out according to the time sequence of the load characteristics. In order to analyze the influence of time and space distribution characteristics of load on the low voltage problem of medium and low voltage distribution network, the main load factors causing the low voltage problem are determined, and the corresponding low voltage treatment scheme is worked out.
【學(xué)位授予單位】:昆明理工大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TM714
【參考文獻(xiàn)】
中國期刊全文數(shù)據(jù)庫 前10條
1 王寶安;商姣;陳豪;;SVG用于單相負(fù)荷電能質(zhì)量綜合治理時(shí)相電流指令的計(jì)算[J];電力自動化設(shè)備;2016年02期
2 楊偉奇;高曉陽;樸在林;;中壓配電網(wǎng)絡(luò)低電壓補(bǔ)償調(diào)控技術(shù)及實(shí)現(xiàn)[J];農(nóng)業(yè)工程學(xué)報(bào);2016年S1期
3 黃桂蘭;林韓;蔡金錠;;農(nóng)村配電網(wǎng)低電壓治理措施研究[J];電氣技術(shù);2015年11期
4 陳玲;;云南電網(wǎng)地區(qū)級計(jì)量自動化系統(tǒng)架構(gòu)[J];云南電力技術(shù);2015年04期
5 嚴(yán)巨剛;郁睿;;電能計(jì)量自動化建設(shè)領(lǐng)軍云南[J];云南電業(yè);2015年07期
6 韓俊;談健;黃河;喬黎偉;;基于改進(jìn)K-means聚類算法的供電塊劃分方法[J];電力自動化設(shè)備;2015年06期
7 鄭曉雨;鄭靜媛;王彥博;;智能電網(wǎng)中實(shí)時(shí)負(fù)荷模型建立研究[J];電力與能源;2015年01期
8 馬瑞;周謝;彭舟;劉道新;徐慧明;王軍;王熙亮;;考慮氣溫因素的負(fù)荷特性統(tǒng)計(jì)指標(biāo)關(guān)聯(lián)特征數(shù)據(jù)挖掘[J];中國電機(jī)工程學(xué)報(bào);2015年01期
9 崔凱;孔祥玉;于慧芳;;法國配電網(wǎng)規(guī)劃方法研究及相關(guān)啟示[J];供用電;2014年08期
10 張麗;;“四合一”計(jì)量自動化系統(tǒng)的構(gòu)建及功能應(yīng)用[J];云南電業(yè);2014年03期
中國博士學(xué)位論文全文數(shù)據(jù)庫 前2條
1 徐振華;面向智能電網(wǎng)的廣義綜合負(fù)荷建模方法研究[D];湖南大學(xué);2012年
2 李培強(qiáng);統(tǒng)計(jì)測辨法綜合負(fù)荷建模研究[D];湖南大學(xué);2009年
中國碩士學(xué)位論文全文數(shù)據(jù)庫 前10條
1 周光耀;負(fù)荷建模中的負(fù)荷特性分類與綜合方法的研究[D];山東大學(xué);2016年
2 姜曉暉;負(fù)荷建模方法研究和負(fù)荷建模平臺的開發(fā)[D];山東大學(xué);2016年
3 于浩祺;電力負(fù)荷特性分析及短期負(fù)荷預(yù)測系統(tǒng)的研發(fā)[D];湖南大學(xué);2016年
4 宋歌;電力負(fù)荷實(shí)測建模及時(shí)變性研究[D];華北電力大學(xué);2015年
5 李萌;中長期電力負(fù)荷特性分析和預(yù)測方法研究[D];上海交通大學(xué);2014年
6 徐兵;基于在線數(shù)據(jù)的負(fù)荷建模研究[D];山東大學(xué);2013年
7 蔡學(xué)文;負(fù)荷特性多維度分析方法與典型用戶篩選策略研究[D];華北電力大學(xué);2013年
8 趙俊秋;計(jì)量自動化系統(tǒng)的一體化設(shè)計(jì)與應(yīng)用研究[D];合肥工業(yè)大學(xué);2009年
9 周晨;基于負(fù)荷特性的電力系統(tǒng)短期負(fù)荷預(yù)測實(shí)現(xiàn)[D];重慶大學(xué);2008年
10 張忠華;電力系統(tǒng)負(fù)荷分類研究[D];天津大學(xué);2007年
,本文編號:2385560
本文鏈接:http://sikaile.net/kejilunwen/dianlidianqilunwen/2385560.html