基于歷史尋優(yōu)的火電機(jī)組運(yùn)行優(yōu)化研究
[Abstract]:At present, our country is faced with a series of problems, such as severe population, bad environment and high primary energy consumption. In order to realize the sustainable development of economy and society, we must take the road of saving resources. Taking green and low carbon as the main line, the 13th Five-Year Plan for Energy Resources has for the first time set such a target. China will limit its energy consumption plan to within 5 billion tons of standard coal by 2020. Therefore, thermal power enterprises have to consider reducing energy consumption to enhance market competitiveness. It is the basic purpose of the operation parameter optimization to adopt the reasonable optimization of the controllable operating parameters of the units in the power plant to ensure that the units can achieve the best operation state under different operating conditions. At the same time, it is also an important means to achieve energy saving and consumption reduction. There are some uncertain problems due to the complex nonlinearity and noise pollution of a large number of operation data in power plants. In order to ensure the authenticity and validity of the data, this paper preprocesses the historical data. Then the concept of sensitivity factor is put forward and sensitivity analysis is carried out. The magnitude of sensitivity factor of unit heat consumption rate and each boundary parameter is analyzed and the parameters with larger energy consumption sensitivity factor are obtained. Fuzzy C-means clustering algorithm is used to partition the data. After the working condition is divided, this paper takes the operation initial pressure optimization of the unit as an example, carries on the historical optimization, and finds out the optimal initial pressure of the same working condition, which is the basis for the subsequent modeling. In this paper, the improved BP and RBF neural networks are used to establish the model between the boundary parameters and the main steam pressure. By analyzing the relative error of the two modeling methods, the RBF neural network method is selected to model the model. Finally, according to the overall model of the unit, it is verified that the optimal main steam pressure variation obtained by the model accords with the theoretical law and proves the effectiveness of the optimization model under the condition of changing the boundary conditions. The research work of this paper has certain theoretical significance and practical value to the analysis of the optimization problem of unit operating parameters.
【學(xué)位授予單位】:華北電力大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TM621
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 馬寶秋;;模糊C均值聚類算法編程實(shí)現(xiàn)及應(yīng)用[J];石家莊職業(yè)技術(shù)學(xué)院學(xué)報;2016年02期
2 李雨熙;;火電廠汽輪機(jī)運(yùn)行初壓優(yōu)化方法及應(yīng)用[J];南方農(nóng)機(jī);2016年01期
3 王秋平;陳志強(qiáng);魏浩;;基于數(shù)據(jù)挖掘的電站運(yùn)行參數(shù)目標(biāo)值優(yōu)化[J];電力科學(xué)與工程;2015年07期
4 牛培峰;劉超;李國強(qiáng);馬云飛;陳貴林;張先臣;;汽輪機(jī)熱耗率多模型建模方法研究[J];計量學(xué)報;2015年03期
5 徐暉;;電力工業(yè):持續(xù)健康發(fā)展 電力消費(fèi)增速將回升——《中國電力工業(yè)現(xiàn)狀與展望》解讀[J];電器工業(yè);2015年04期
6 梁旭坤;何志堅;;基于模糊RBF神經(jīng)網(wǎng)絡(luò)的數(shù)控機(jī)床熱誤差建模[J];機(jī)械設(shè)計與研究;2013年05期
7 馬瑞;康仁;羅斌;徐慧明;何進(jìn);;基于改進(jìn)主成分分析法的火電機(jī)組能耗特征識別方法[J];電網(wǎng)技術(shù);2013年05期
8 宋小敏;張國防;邢淑蘭;汪鎖田;;基于數(shù)據(jù)挖掘的課程相關(guān)性分析方法[J];山西財經(jīng)大學(xué)學(xué)報;2012年S3期
9 石琴;仇多洋;吳靖;;基于主成分分析和FCM聚類的行駛工況研究[J];環(huán)境科學(xué)研究;2012年01期
10 劉寶玲;何鈞;;基于數(shù)據(jù)挖掘及SIS的工況劃分方法研究[J];南昌工程學(xué)院學(xué)報;2009年06期
相關(guān)博士學(xué)位論文 前6條
1 王寧玲;基于數(shù)據(jù)挖掘的大型燃煤發(fā)電機(jī)組節(jié)能診斷優(yōu)化理論與方法研究[D];華北電力大學(xué)(北京);2011年
2 楊婷婷;基于數(shù)據(jù)的電站節(jié)能優(yōu)化控制研究[D];華北電力大學(xué)(北京);2010年
3 王惠杰;基于混合模型的機(jī)組狀態(tài)重構(gòu)及運(yùn)行優(yōu)化研究[D];華北電力大學(xué)(河北);2009年
4 李利平;火電機(jī)組節(jié)能在線分析與智能運(yùn)行優(yōu)化方法研究[D];華北電力大學(xué)(河北);2007年
5 屈鴻;回復(fù)式神經(jīng)網(wǎng)絡(luò)及其在組合優(yōu)化問題中的應(yīng)用[D];電子科技大學(xué);2006年
6 盧勇;數(shù)據(jù)信息采掘與熱工過程控制優(yōu)化[D];清華大學(xué);2003年
相關(guān)碩士學(xué)位論文 前10條
1 趙冉;第二類正交(張量)權(quán)函數(shù)神經(jīng)網(wǎng)絡(luò)的算法復(fù)雜度研究及其應(yīng)用[D];南京郵電大學(xué);2014年
2 陳林霄;汽輪機(jī)組運(yùn)行初壓在線尋優(yōu)方法應(yīng)用研究[D];華北電力大學(xué);2014年
3 彭燦;大型火力發(fā)電機(jī)組主蒸汽壓力定值節(jié)能優(yōu)化[D];華北電力大學(xué);2013年
4 錢偉強(qiáng);一種基于改進(jìn)粒子群和K均值結(jié)合的聚類算法[D];西安電子科技大學(xué);2011年
5 齊淼;模糊聚類集成算法及融合差異度分析研究[D];山東師范大學(xué);2010年
6 李曉光;數(shù)據(jù)挖掘技術(shù)在高校招生和教務(wù)管理中的應(yīng)用[D];哈爾濱工程大學(xué);2010年
7 趙曉峰;電廠熱經(jīng)濟(jì)分析中重要參數(shù)耗差計算模型的建立[D];華北電力大學(xué)(北京);2009年
8 李軍;基于人工神經(jīng)網(wǎng)絡(luò)的工程造價信息預(yù)測平臺建立研究[D];重慶大學(xué);2008年
9 馬杏齋;熱工故障的模糊神經(jīng)網(wǎng)絡(luò)診斷方法研究[D];華北電力大學(xué)(河北);2008年
10 關(guān)大偉;數(shù)據(jù)挖掘中的數(shù)據(jù)預(yù)處理[D];吉林大學(xué);2006年
,本文編號:2381694
本文鏈接:http://sikaile.net/kejilunwen/dianlidianqilunwen/2381694.html