數(shù);旌现鲃优潆娋W(wǎng)的能量優(yōu)化管理與電池經(jīng)濟性評價
[Abstract]:With the depletion of traditional energy, the renewable energy generation system based on microgrid has been developed rapidly because of its flexibility, dispersion, small size, proximity to users and the use of clean energy. The energy storage system can not only reduce the fluctuation of renewable energy output and improve the power quality, but also can absorb and release power timely, shift peak and fill valley, improve the performance of power grid and reduce the cost of electricity purchase. Reasonable selection and charge / discharge control of energy storage battery plays a key role in improving the efficiency of microgrid operation and reducing the operating cost of microgrid. In this paper, an optimization strategy of microgrid energy management based on model predictive control is studied, and the hardware-in-the-loop simulation platform of active distribution network is built with Beijing Jiaotong University electrical building as the research object. The virtual energy storage system is built with the battery model. The energy management operation mode and the energy storage configuration mode are selected in order to minimize the monthly operation cost of the microgrid. The main contents are as follows: (1) the equivalent circuit models of lithium ion battery and lead acid battery are studied and established. The cycle number equivalent method is used to evaluate the performance attenuation of the battery. The dynamic characteristics and cycle performance attenuation of the model are verified by simulation. The accuracy of the model and the correctness of the performance attenuation index are verified by the simulation results. Then, considering the actual attenuation of the battery, the cost function of the energy storage system is established, which is used to evaluate the economy of the energy storage system. (2) A predictive control based on the model is studied. The optimization strategy of microgrid energy management based on maximum demand, considering the load requirement in microgrid, the operating cost and constraint of each distributed power supply, the power and power constraint of energy storage system, etc. The mixed integer linear programming model is used to find the optimal solution by rolling. According to the obtained optimal solution, the load, energy storage and distributed generation unit in the microgrid are optimized and controlled, which can effectively improve the efficiency of the distribution network. (3) using Matlab/Simulink and Labview software to build the hardware-in-the-loop simulation platform of active distribution network. The platform integrates virtual energy storage system, calculation module of energy management algorithm, meteorological data acquisition module. The power data acquisition and monitoring module of distribution network is used to verify the energy management strategy and evaluate the economy of energy storage system. (4) based on the hardware-in-the-loop digital platform, the energy storage cell model and cost function are used. Based on the real environment and measured data of the active distribution network of Beijing Jiaotong University, the optimization strategy of energy management is verified by an example. The calculation results show that the energy management optimization algorithm studied in this paper can solve the optimal charge and discharge control strategy based on load demand, renewable energy output, real time electricity price and residual capacity of energy storage system in real time. (5) by analyzing the operation cost of microgrid and the economy of energy storage system, the best combination of "battery type-energy management operation mode" is obtained. The results show that lead acid battery is more economical than lithium ion battery in the field of microgrid energy storage. The main innovation of this paper is to build a hardware-in-the-loop real-time simulation platform for active distribution network, which can simulate the combination of "energy management strategy-energy storage battery" in different active distribution networks. By comparing the total operating cost of microgrid with different combinations, the optimal scheme is obtained to guide the actual control mode and energy storage configuration of the microgrid, thus greatly reducing the cost of physical testing.
【學(xué)位授予單位】:北京交通大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TM73
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 柏小麗;陽洪英;嚴(yán)文潔;羅皓文;;淺談市場環(huán)境下的電力需求側(cè)管理[J];技術(shù)與市場;2017年02期
2 王明;李欣然;譚紹杰;黃亞唯;;考慮經(jīng)濟性的風(fēng)儲聯(lián)合雙應(yīng)用的儲容配置方法[J];電力系統(tǒng)及其自動化學(xué)報;2017年02期
3 鄒濤;孫浩杰;張鑫;王景楊;師云;;一種多變量預(yù)測控制的分程控制策略實現(xiàn)方法[J];控制與決策;2017年04期
4 張燕區(qū);;計量自動化系統(tǒng)在基本電費成本控制中的應(yīng)用[J];技術(shù)與市場;2016年09期
5 程啟明;陳根;程尹曼;白園飛;李明;;一種微網(wǎng)結(jié)構(gòu)的能量管理策略仿真研究[J];中國電力;2016年07期
6 楊先碧;;全球新能源熱潮[J];生命與災(zāi)害;2016年06期
7 董雷;陳卉;蒲天驕;陳乃仕;王曉輝;;基于模型預(yù)測控制的主動配電網(wǎng)多時間尺度動態(tài)優(yōu)化調(diào)度[J];中國電機工程學(xué)報;2016年17期
8 賈科;陳奕汝;畢天姝;Mark SUMNER;;微網(wǎng)中儲能系統(tǒng)的能量管控方法[J];中國電機工程學(xué)報;2016年10期
9 蔡宇;林今;宋永華;舒彬;張凱;;基于模型預(yù)測控制的主動配電網(wǎng)電壓控制[J];電工技術(shù)學(xué)報;2015年23期
10 茅龔丹;楊靜;吳佳驊;;國內(nèi)外直流微網(wǎng)發(fā)展動態(tài)[J];現(xiàn)代建筑電氣;2015年10期
相關(guān)博士學(xué)位論文 前7條
1 施琳;含新能源的獨立電網(wǎng)儲能容量配置和運行策略研究[D];華中科技大學(xué);2014年
2 趙耀;基于分布式電源的微網(wǎng)控制及運行優(yōu)化研究[D];南開大學(xué);2013年
3 王瑞琪;分布式發(fā)電與微網(wǎng)系統(tǒng)多目標(biāo)優(yōu)化設(shè)計與協(xié)調(diào)控制研究[D];山東大學(xué);2013年
4 李軍徽;抑制風(fēng)電對電網(wǎng)影響的儲能系統(tǒng)優(yōu)化配置及控制研究[D];華北電力大學(xué);2012年
5 劉夢璇;微網(wǎng)能量管理與優(yōu)化設(shè)計研究[D];天津大學(xué);2012年
6 苗軼群;含電動汽車及換電站的微網(wǎng)優(yōu)化調(diào)度研究[D];浙江大學(xué);2012年
7 陳昌松;光伏微網(wǎng)的發(fā)電預(yù)測與能量管理技術(shù)研究[D];華中科技大學(xué);2011年
相關(guān)碩士學(xué)位論文 前10條
1 殷明月;鋰離子動力電池電化學(xué)建模與仿真研究[D];吉林大學(xué);2016年
2 張艷杰;分布式發(fā)電系統(tǒng)經(jīng)濟運行關(guān)鍵因素分析與優(yōu)化[D];北京交通大學(xué);2015年
3 呂雙輝;分布式光伏與儲能系統(tǒng)的經(jīng)濟性分析與政策研究[D];天津大學(xué);2014年
4 戶龍輝;鋰離子電池儲能系統(tǒng)建模及其對電網(wǎng)穩(wěn)定性影響研究[D];湖南大學(xué);2014年
5 張浩;儲能系統(tǒng)用于配電網(wǎng)削峰填谷的經(jīng)濟性評估方法研究[D];華北電力大學(xué);2014年
6 李路遙;分布式光伏發(fā)電并網(wǎng)系統(tǒng)混合儲能容量配置研究[D];上海交通大學(xué);2014年
7 方曉寶;基于供電可靠性的微網(wǎng)優(yōu)化設(shè)計[D];華北電力大學(xué);2013年
8 張娟;鉛酸電池儲能系統(tǒng)建模與應(yīng)用研究[D];湖南大學(xué);2013年
9 婁明山;基于Simulink的工業(yè)過程實時仿真系統(tǒng)[D];中南大學(xué);2012年
10 劉霞;含多種分布式電源和儲能的微電網(wǎng)控制技術(shù)[D];浙江大學(xué);2012年
,本文編號:2371228
本文鏈接:http://sikaile.net/kejilunwen/dianlidianqilunwen/2371228.html