應(yīng)用于衛(wèi)星電源的可分離式變壓器設(shè)計(jì)與實(shí)現(xiàn)
[Abstract]:Wireless transmission is a new mode of power transmission, which breaks the thought that electricity can only be transmitted by wire, because there is no electrical connection between the power supply side and the receiving side. This fundamentally eliminates the possibility of electrical sparks or short circuit in power supply circuits in the process of plugging or in a special working environment, thus avoiding the resulting disaster. In this paper, the wireless transmission technology is applied to the solar array battery power supply system of satellite, in order to solve the inherent bottleneck which affects the reliability of spacecraft, the core electrical components of the system can be separated type transformer. A series of theoretical and experimental studies have been carried out. Firstly, this paper introduces the research background, domestic and international research status and development trend, and introduces the structure, working principle and design principle of the non-contact battery array / battery unit power supply system. Then, the material characteristics, magnetic circuit characteristics, transmission characteristics and energy loss characteristics of separable transformer are expounded, and the input power of the primary edge of separable transformer is deduced in detail by establishing the equivalent circuit model of mutual inductance. The mathematical expressions of the output power and transmission efficiency of the secondary side are obtained, and the external working and internal structure parameters affecting the transmission efficiency of the transformer are obtained. Then the design process of separable transformer is introduced emphatically. Firstly, the whole core structure is selected, and the two-dimensional axisymmetric model is established, and the finite element simulation analysis method is adopted. According to the influence of air gap size on transmission efficiency, the cylindrical coupled core structure is selected. The further design of columnar coupled separable transformer includes the determination of Fe-Ni soft magnetic alloy (1J50) as the core material. The expression of coupling coefficient is deduced by using the Ohm law of magnetic circuit, and the optimum design of the size of magnetic core window is carried out according to the expression, the coupling coefficient of transformer is improved, considering the influence of skin effect, the specific Leeds line specification is selected. The winding number of coils is determined by analogy with common high frequency transformer winding design method. Then a two-dimensional axisymmetric model of the optimized transformer is established to study the influence of different frequencies and load values on the transmission efficiency of the designed transformer. The optimal working frequency and load value of the transformer are determined and the corresponding transmission efficiency is obtained. Finally, according to the structure size of the simulation design, the detachable transformer experimental prototype is processed and manufactured, and the transmission efficiency is verified by the experimental results. The designed and realized transformer can operate stably under the high frequency voltage of 100V and meet the design target of transmission efficiency of not less than 80%. The error of simulation and experiment is analyzed, the hysteresis loss and eddy current loss are the main factors, and the core of transformer is cut evenly. The experimental results show that this method can effectively reduce the negative effect of eddy current loss on the transmission efficiency of low resistivity iron core materials. Therefore, the research results of this paper can provide some theoretical and practical guidance for the future application of wireless transmission technology in aerospace field.
【學(xué)位授予單位】:華北電力大學(xué)(北京)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TM41
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 王旭東;閆美存;劉金鳳;于勇;;相對旋轉(zhuǎn)時(shí)非接觸式勵(lì)磁系統(tǒng)磁罐變壓器研究[J];中國電機(jī)工程學(xué)報(bào);2015年22期
2 祝帆;唐云宇;馬皓;;ICPT中線圈繞制方法對耦合系數(shù)影響研究[J];電力電子技術(shù);2015年10期
3 于朝清;吳達(dá);任小梅;龔文明;黃磊;吳傳軍;;非晶態(tài)軟磁合金材料的研究進(jìn)展[J];電工材料;2015年03期
4 李小平;謝楷;傅靈忠;薛夢凡;劉東林;郭世忠;;太陽能帆板驅(qū)動(dòng)裝置非接觸供電技術(shù)可行性研究[J];載人航天;2014年01期
5 趙爭鳴;張藝明;陳凱楠;;磁耦合諧振式無線電能傳輸技術(shù)新進(jìn)展[J];中國電機(jī)工程學(xué)報(bào);2013年03期
6 韓帥;張黎;譚興國;李慶民;婁杰;;基于損耗分析的大容量高頻變壓器鐵芯材料選型方法[J];高電壓技術(shù);2012年06期
7 郭敏;王寅崗;繆雪飛;;非晶納米晶軟磁合金的研究進(jìn)展[J];金屬熱處理;2010年11期
8 李雪;張俊喜;劉國平;顏立成;;錳鋅鐵氧體結(jié)構(gòu)性能的研究及發(fā)展概況[J];材料導(dǎo)報(bào);2008年08期
9 陳林;李淑琴;王曉波;林輝;;非接觸式旋轉(zhuǎn)高頻鏈變壓器在衛(wèi)星電源上的應(yīng)用[J];電源技術(shù)應(yīng)用;2007年07期
10 孫躍;王智慧;戴欣;蘇玉剛;李良;;非接觸電能傳輸系統(tǒng)的頻率穩(wěn)定性研究[J];電工技術(shù)學(xué)報(bào);2005年11期
相關(guān)博士學(xué)位論文 前2條
1 陶國彬;非接觸電能傳輸關(guān)鍵應(yīng)用技術(shù)問題研究[D];東北石油大學(xué);2015年
2 張旭;感應(yīng)耦合式電能傳輸系統(tǒng)的理論與技術(shù)研究[D];中國礦業(yè)大學(xué)(北京);2011年
相關(guān)碩士學(xué)位論文 前10條
1 陳輝;基于可分離變壓器的小功率旋轉(zhuǎn)式供能系統(tǒng)的研究[D];燕山大學(xué);2015年
2 劉闖;小功率非接觸電能傳輸裝置的設(shè)計(jì)[D];東北石油大學(xué);2014年
3 張本朋;1J50與鎳鋅鐵氧體制備及其性能研究[D];蘭州理工大學(xué);2014年
4 賀鴻鵬;基于COMSOL的OCT傳感單元的多物理場研究與設(shè)計(jì)[D];華北電力大學(xué);2014年
5 陳珂睿;非接觸式電能傳輸系統(tǒng)功率及傳輸效率研究[D];華北電力大學(xué);2014年
6 徐金鳳;基于ANSYS的導(dǎo)向鉆井系統(tǒng)非接觸電能傳輸技術(shù)研究[D];東北石油大學(xué);2013年
7 肖海榮;小功率非接觸旋轉(zhuǎn)式供能系統(tǒng)的研究[D];燕山大學(xué);2013年
8 張建偉;電動(dòng)汽車電磁感應(yīng)充電耦合方式與效能研究[D];華南理工大學(xué);2013年
9 陸晴云;應(yīng)用于深海環(huán)境的非接觸式電能傳輸系統(tǒng)的關(guān)鍵技術(shù)研究[D];浙江大學(xué);2012年
10 李永振;松耦合技術(shù)在旋轉(zhuǎn)導(dǎo)向鉆井中的研究與應(yīng)用[D];西安石油大學(xué);2011年
,本文編號:2332890
本文鏈接:http://sikaile.net/kejilunwen/dianlidianqilunwen/2332890.html