電網(wǎng)無(wú)功優(yōu)化算法的研究與實(shí)現(xiàn)
[Abstract]:With the increasing density and complexity of power grid structure and the deepening of power network intelligence, power dispatching system requires more efficient and easy to operate reactive power optimization calculation method. Therefore, how to further enhance the power grid control ability and improve the efficiency of reactive power optimization, become the focus of power system researchers. As the basic task of power grid dispatching, the voltage and reactive power optimal control is to collect the node information of the station automatically to analyze and control the real-time data, and finally to make the voltage quality index higher. The target of capacitor switching is more scientific and reasonable, and the power loss is lower. The existing reactive power optimization models include: single objective model, multi-objective dynamic optimization model, optimization algorithm including linear programming, simplified gradient method and other traditional algorithms, genetic algorithm, simulated annealing algorithm and other intelligent algorithms. In practical application, although the programming algorithm has strict theoretical support, it is difficult to deal with the problems with a large number of discrete variables and constraints, and the real-time control of the complex reactive power optimization model can not meet the requirements. For the single intelligent algorithm, it is easy to precocious and fall into the trap of local optimum in the whole solution space, and it has some defects such as long calculation time and slow searching speed. Therefore, aiming at the difficulties encountered in the practical application of reactive power optimization, this paper studies and designs a particle swarm optimization algorithm with variable inertia weight and acceleration factor after synthetically analyzing the scientific research situation in the category of reactive power optimization. In the updating formula of the improved algorithm, the inertial weight w and the acceleration factor c2 will be changed according to the distance between the particle and the optimal particle. For example, when the particle is close to the swarm optimal particle, the inertia weight w will be increased and the acceleration factor c2 will be reduced. At the same time, comparing the algorithm with genetic algorithm, simulated annealing algorithm and ant colony algorithm, it is found that the algorithm is more effective in reducing power loss, and the optimization time is shorter and the global optimization is better. Finally, the improved algorithm is applied to the visual software system of reactive power optimization in Zigong area based on struts2 framework and oracle database.
【學(xué)位授予單位】:華北電力大學(xué)(北京)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類(lèi)號(hào)】:TM714.3
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 李鴻鑫;李銀紅;李智歡;;多目標(biāo)進(jìn)化算法求解無(wú)功優(yōu)化問(wèn)題的比較與評(píng)估[J];電網(wǎng)技術(shù);2013年06期
2 李鴻鑫;李銀紅;陳金富;段獻(xiàn)忠;;自適應(yīng)選擇進(jìn)化算法的多目標(biāo)無(wú)功優(yōu)化方法[J];中國(guó)電機(jī)工程學(xué)報(bào);2013年10期
3 李志剛;吳文傳;張伯明;郭慶來(lái);;一種基于高斯罰函數(shù)的大規(guī)模無(wú)功優(yōu)化離散變量處理方法[J];中國(guó)電機(jī)工程學(xué)報(bào);2013年04期
4 李智;楊洪耕;;一種用于分解協(xié)調(diào)無(wú)功優(yōu)化的全分鄰近中心算法[J];中國(guó)電機(jī)工程學(xué)報(bào);2013年01期
5 王韶;張煜成;周鑫;李穎;;基于一種改進(jìn)蟻群算法的動(dòng)態(tài)無(wú)功優(yōu)化[J];電力系統(tǒng)保護(hù)與控制;2012年17期
6 靳丹;王維洲;曹俊龍;劉文穎;;基于改進(jìn)自適應(yīng)變異概率遺傳算法的無(wú)功優(yōu)化方法[J];中國(guó)電業(yè)(技術(shù)版);2012年07期
7 周鑫;諸弘安;馬愛(ài)軍;;基于多種群蟻群算法的多目標(biāo)動(dòng)態(tài)無(wú)功優(yōu)化[J];電網(wǎng)技術(shù);2012年07期
8 劉志文;劉明波;;基于REI等值的多區(qū)域無(wú)功優(yōu)化并行計(jì)算(英文)[J];電網(wǎng)技術(shù);2012年03期
9 邱威;張建華;劉念;;考慮環(huán)境因素和電壓穩(wěn)定性的多目標(biāo)最優(yōu)潮流[J];電工技術(shù)學(xué)報(bào);2012年02期
10 林濟(jì)鏗;石偉釗;武乃虎;劉濤;鄭衛(wèi)洪;王東濤;;計(jì)及離散變量基于互補(bǔ)約束全光滑牛頓法的無(wú)功優(yōu)化[J];中國(guó)電機(jī)工程學(xué)報(bào);2012年01期
,本文編號(hào):2312014
本文鏈接:http://sikaile.net/kejilunwen/dianlidianqilunwen/2312014.html