天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > 電氣論文 >

基于電壓相量和深度學(xué)習(xí)的電力系統(tǒng)暫態(tài)穩(wěn)定快速評估

發(fā)布時間:2018-11-05 11:46
【摘要】:近些年以來,中國、美國、印度等國家發(fā)生了多起大面積停電事故,造成了巨大的經(jīng)濟(jì)損失和社會影響?稍偕茉、電力負(fù)荷的進(jìn)一步增長、電力系統(tǒng)中電力電子化的廣泛應(yīng)用等增加了電網(wǎng)運(yùn)行的不確定性和復(fù)雜性,電網(wǎng)安全穩(wěn)定運(yùn)行面臨著嚴(yán)峻的挑戰(zhàn)。隨著人工智能、深度學(xué)習(xí)的興起,為研究人員從大數(shù)據(jù)、大樣本、概率學(xué)的角度分析電網(wǎng)信息物理系統(tǒng)的安全穩(wěn)定性,提供了堅實(shí)的理論基礎(chǔ)。本文采用深度卷積網(wǎng)絡(luò)(CNN)技術(shù),通過構(gòu)建可視化的全信息電網(wǎng)圖,將CNN方法引入到電力系統(tǒng)暫態(tài)安全穩(wěn)定性分析中。并在總結(jié)分析前人工作的基礎(chǔ)上,結(jié)合支路勢能的方法,解釋了系統(tǒng)暫態(tài)可視化過程中電網(wǎng)“撕裂”特征的機(jī)理,并提出快速判斷電力系統(tǒng)薄弱斷面以及暫態(tài)穩(wěn)定性快速判別的方法;诳梢暬约袄碚摲治龅某晒,構(gòu)建了深度卷積神經(jīng)網(wǎng)絡(luò)對系統(tǒng)暫態(tài)穩(wěn)定進(jìn)行分析,實(shí)現(xiàn)電力系統(tǒng)暫態(tài)穩(wěn)定快速評估。本文主要包括以下內(nèi)容:(1)構(gòu)建了動態(tài)可視化的電網(wǎng)圖。建立了基于電壓復(fù)平面的電力系統(tǒng)映射平面,以IEEE 10機(jī)39節(jié)點(diǎn)為例,獲取其仿真數(shù)據(jù)以及已有拓?fù)溥B接關(guān)系,基于Echart實(shí)現(xiàn)該系統(tǒng)節(jié)點(diǎn)信息在電壓復(fù)平面上動態(tài)展示。(2)建立了基于電壓復(fù)平面動態(tài)信息的電力系統(tǒng)暫態(tài)穩(wěn)定分析模型。從薄弱斷面的角度,分析了電壓相量距離和振蕩中心落點(diǎn)支路的關(guān)系,給出快速識別薄弱斷面的方法。在此基礎(chǔ)上,進(jìn)一步分析了薄弱斷面領(lǐng)先機(jī)群側(cè)母線的相軌跡特征,提出了基于薄弱斷面兩端母線相軌跡特征的暫態(tài)穩(wěn)定性判別方法。(3)開發(fā)了樣本批量制造程序,為深度學(xué)習(xí)提供足夠的樣本。借鑒深度學(xué)習(xí)方法在人工視覺領(lǐng)域處理數(shù)據(jù)的方法,以處理圖片像素矩陣的角度,將深度學(xué)習(xí)的方法應(yīng)用于電力系統(tǒng)暫態(tài)穩(wěn)定性評估。通過實(shí)驗的方法,確定了合適的模型參數(shù),提出了多窗口滑動識別電力系統(tǒng)暫態(tài)穩(wěn)定性的方式,減少了模型的參數(shù)并提升了判斷準(zhǔn)確率。
[Abstract]:In recent years, China, the United States, India and other countries have had a number of large-scale power outages, resulting in huge economic losses and social impact. With the further growth of renewable energy, power load and the wide application of electronization in power system, the uncertainty and complexity of power grid operation are increased, so the safe and stable operation of power network is facing severe challenges. With the rise of artificial intelligence and deep learning, it provides a solid theoretical basis for researchers to analyze the security and stability of power grid information physical systems from the perspective of big data, large samples and probabilities. In this paper, the deep convolution network (CNN) technique is used to construct a visual full information grid diagram, and the CNN method is introduced to the transient security stability analysis of power system. On the basis of summing up and analyzing the previous work, combined with the method of branch potential energy, the mechanism of power grid "tearing" in the process of system transient visualization is explained. A fast method for judging the weak section and transient stability of power system is proposed. Based on the results of visualization and theoretical analysis, a deep convolution neural network is constructed to analyze the transient stability of power system. The main contents of this paper are as follows: (1) A dynamic visual grid diagram is constructed. The power system mapping plane based on voltage complex plane is established. Taking 39 nodes of IEEE 10 machine as an example, the simulation data and the existing topology connection are obtained. The node information of the system is dynamically displayed on the voltage complex plane based on Echart. (2) the power system transient stability analysis model based on the voltage complex plane dynamic information is established. From the point of view of weak section, the relationship between the voltage phasor distance and the branch of the oscillation center drop point is analyzed, and the method to identify the weak section quickly is given. On this basis, the phase locus characteristics of the side bus of the weak section leading cluster are further analyzed, and a method of judging transient stability based on the phase trace characteristics of the weak section is proposed. (3) A batch manufacturing program is developed. Provide enough samples for deep learning. The depth learning method is applied to power system transient stability evaluation by using depth learning method for data processing in artificial vision field to deal with image pixel matrix. Through the experimental method, the suitable model parameters are determined, and a multi-window sliding identification method is proposed to identify the transient stability of power system, which reduces the parameters of the model and improves the accuracy of judgment.
【學(xué)位授予單位】:中國電力科學(xué)研究院
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TM712

【參考文獻(xiàn)】

相關(guān)期刊論文 前10條

1 馬世龍;烏尼日其其格;李小平;;大數(shù)據(jù)與深度學(xué)習(xí)綜述[J];智能系統(tǒng)學(xué)報;2016年06期

2 邵瑤;湯涌;易俊;王安斯;;土耳其“3·31”大停電事故分析及啟示[J];電力系統(tǒng)自動化;2016年23期

3 李柏青;劉道偉;秦曉輝;嚴(yán)劍峰;;信息驅(qū)動的大電網(wǎng)全景安全防御概念及理論框架[J];中國電機(jī)工程學(xué)報;2016年21期

4 鄭超;苗田;;交流薄弱斷面中關(guān)鍵支路動態(tài)識別及穩(wěn)定控制[J];中國電機(jī)工程學(xué)報;2015年21期

5 岑炳成;唐飛;廖清芬;晏陽;唐昱恒;董飛飛;李瑾瑜;;應(yīng)用功角空間降維變換的相軌跡判別系統(tǒng)暫態(tài)穩(wěn)定性[J];中國電機(jī)工程學(xué)報;2015年11期

6 茍競;劉俊勇;Gareth Taylor;Christopher Saunders;劉友波;劉洋;;基于發(fā)電機(jī)對暫態(tài)勢能集的電力系統(tǒng)暫態(tài)穩(wěn)定快速評估[J];電網(wǎng)技術(shù);2015年02期

7 劉道偉;張東霞;孫華東;馬世英;李柏青;朱朝陽;易俊;鄭超;秦曉輝;許鵬飛;楊學(xué)濤;;時空大數(shù)據(jù)環(huán)境下的大電網(wǎng)穩(wěn)定態(tài)勢量化評估與自適應(yīng)防控體系構(gòu)建[J];中國電機(jī)工程學(xué)報;2015年02期

8 王亞俊;王波;唐飛;陳得治;王靜;王乙斐;周雨田;;基于響應(yīng)軌跡和核心向量機(jī)的電力系統(tǒng)在線暫態(tài)穩(wěn)定評估[J];中國電機(jī)工程學(xué)報;2014年19期

9 楊勝春;湯必強(qiáng);姚建國;李峰;於益軍;馮樹海;;基于態(tài)勢感知的電網(wǎng)自動智能調(diào)度架構(gòu)及關(guān)鍵技術(shù)[J];電網(wǎng)技術(shù);2014年01期

10 顧卓遠(yuǎn);湯涌;孫華東;劉楠;秦曉輝;張妍;;一種基于轉(zhuǎn)速差 功角差變化趨勢的暫態(tài)功角穩(wěn)定辨識方法[J];中國電機(jī)工程學(xué)報;2013年31期

相關(guān)博士學(xué)位論文 前1條

1 葉圣永;基于機(jī)器學(xué)習(xí)的電力系統(tǒng)暫態(tài)穩(wěn)定評估研究[D];西南交通大學(xué);2010年

相關(guān)碩士學(xué)位論文 前2條

1 黎萌;電力系統(tǒng)暫態(tài)穩(wěn)定時域仿真終止判據(jù)的研究[D];浙江大學(xué);2015年

2 杜浩;基于網(wǎng)格與并行技術(shù)的電力系統(tǒng)動態(tài)安全評估[D];上海交通大學(xué);2011年

,

本文編號:2311991

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/dianlidianqilunwen/2311991.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶090e9***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com