基于RCM的風(fēng)電機(jī)組維修決策技術(shù)研究
[Abstract]:Wind power generation technology is a kind of clean energy power generation technology. Nowadays, the economy of our country continues to develop at a high speed, resources are gradually scarce, and environmental problems are becoming more and more serious under the background of rapid development. However, due to the poor operating environment of wind turbine, the low manufacturing level of domestic wind turbine in the early stage, and the immature operation and maintenance management technology of wind farm enterprises, the failure rate of wind power equipment is relatively high. At present, the methods of equipment maintenance and inspection in domestic wind farm are based on the maintenance manual provided by the equipment manufacturer, and do not take into account the actual operation of the wind farm, so there are some problems such as improper selection of maintenance strategy, excessive maintenance and lack of maintenance. At present, the main maintenance means of wind farm is ex post maintenance. For the important equipment, it is difficult to control the failure consequence and will cause serious damage to the equipment. Aiming at the above problems, this paper introduces the reliability centered maintenance (RCM) concept into the wind power field, takes the wind turbine as the research object, and develops the maintenance decision method based on RCM. The main work of this paper is as follows: (1) system analysis of wind turbine based on RCM: the implementation process of RCM method in wind farm is introduced. By analyzing the composition and function of the equipment in the wind turbine, dividing the wind turbine system, sorting out the equipment data of the wind turbine, running and maintaining instructions and historical fault data, the functional block diagram and the task reliability block diagram of each system are drawn. Complete failure mode and impact analysis. Fault tree analysis of key equipment and quantitative analysis are carried out. (2) Establishment of life analysis model for key equipment of wind turbine: discuss the problems to be considered in the establishment of life analysis model of wind turbine. The life model of key equipment is established by Weibull distribution model, and the model is judged by fitting. According to the model to calculate the failure rate, reliability, failure probability density, average failure time and other related reliability indicators. (3) maintenance decision and periodic maintenance cycle determination: through the decision process in RCM, The maintenance decision is made on the fault mode of the equipment in the wind turbine, and the failure mode of the equipment is determined by the Weibull distribution failure rate model, which belongs to the failure mode in RCM. By considering the consequences of failure and the maintenance cost of different maintenance modes, the maintenance method is determined. Finally, the periodic maintenance or replacement interval is determined for the failure with periodic maintenance.
【學(xué)位授予單位】:華北電力大學(xué)(北京)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TM315
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 楊培林;徐凱;薛沖沖;賈煥如;;基于模型檢測的機(jī)電系統(tǒng)FMEA研究[J];機(jī)械工程學(xué)報;2016年16期
2 奚蔚;黃甫;趙劍軍;;疲勞壽命分布參數(shù)估計方法對比[J];江蘇科技信息;2016年15期
3 張琛;郭盛;高偉;邱逢濤;楊濤;李友良;;基于可靠度的風(fēng)電機(jī)組機(jī)會維修策略[J];廣東電力;2016年02期
4 張鵬;許力;趙世偉;;飛機(jī)系統(tǒng)維修方式確定與維修間隔優(yōu)化研究[J];計算機(jī)仿真;2016年01期
5 沈安慰;郭基聯(lián);王卓健;;競爭性故障模型可靠性評估的非參數(shù)估計方法[J];航空動力學(xué)報;2016年01期
6 劉雙躍;張?zhí)祺?夏川;;冶金設(shè)備故障率分布的兩重威布爾模型建立及應(yīng)用[J];冶金設(shè)備;2015年05期
7 楊麗梅;蔡長亮;徐楠;;基于模糊綜合評判與FMEA的數(shù)控機(jī)床故障分析[J];機(jī)床與液壓;2015年15期
8 安宗文;許潔;劉波;;基于無故障數(shù)據(jù)的風(fēng)電機(jī)組齒輪箱可靠度預(yù)測[J];蘭州理工大學(xué)學(xué)報;2015年02期
9 李練兵;張秀云;王志華;王志強(qiáng);;故障樹和BAM神經(jīng)網(wǎng)絡(luò)在光伏并網(wǎng)故障診斷中的應(yīng)用[J];電工技術(shù)學(xué)報;2015年02期
10 程軍偉;劉旭剛;董宏國;朱志雄;;車輛裝備故障率模型[J];軍事交通學(xué)院學(xué)報;2015年01期
相關(guān)會議論文 前2條
1 黃超群;蔣仁言;;風(fēng)電機(jī)組的運(yùn)維管理研究現(xiàn)狀與展望[A];2015年全國機(jī)械行業(yè)可靠性技術(shù)學(xué)術(shù)交流會暨第五屆可靠性工程分會第二次全體委員大會論文集[C];2015年
2 張恩廣;;狀態(tài)監(jiān)測有效提升風(fēng)能發(fā)電傳動系統(tǒng)可靠性[A];中國農(nóng)機(jī)工業(yè)協(xié)會風(fēng)能設(shè)備分會《風(fēng)能產(chǎn)業(yè)》(2013年第12期)[C];2013年
相關(guān)博士學(xué)位論文 前3條
1 常昊;風(fēng)電工程全壽命期風(fēng)險管理模型及信息系統(tǒng)研究[D];華北電力大學(xué);2014年
2 張謙;新能源風(fēng)電運(yùn)營不確定性收益管理方法及信息系統(tǒng)研究[D];華北電力大學(xué);2014年
3 蔣澤甫;風(fēng)電轉(zhuǎn)換系統(tǒng)可靠性評估及其薄弱環(huán)節(jié)辨識[D];重慶大學(xué);2012年
相關(guān)碩士學(xué)位論文 前10條
1 余斌;基于RCM的設(shè)備維護(hù)策略研究[D];合肥工業(yè)大學(xué);2015年
2 潘其云;基于RCM的風(fēng)電機(jī)組維修周期決策[D];華北電力大學(xué);2015年
3 王磊;基于威布爾分布的油田機(jī)采井故障率研究[D];東北石油大學(xué);2014年
4 徐賢東;基于RCM理論的核電設(shè)備重要度及效益評估研究[D];南華大學(xué);2014年
5 佟寶玲;考慮多狀態(tài)性的風(fēng)電機(jī)組主傳動鏈可用度分析[D];蘭州理工大學(xué);2013年
6 梁勇;風(fēng)電機(jī)組主軸軸承的疲勞壽命預(yù)測[D];蘭州理工大學(xué);2013年
7 王冠雄;加工中心早期故障期及偶然故障期可靠性分析[D];大連理工大學(xué);2014年
8 彭超;擬合優(yōu)度檢驗(yàn)統(tǒng)計量的研究及在質(zhì)量控制中的應(yīng)用[D];燕山大學(xué);2012年
9 王鶴;基于RCM的數(shù)控機(jī)床預(yù)防性維修策略研究[D];吉林大學(xué);2012年
10 孟繁超;大型風(fēng)力發(fā)電機(jī)組故障分析及齒輪箱溫度監(jiān)測系統(tǒng)研究[D];華北電力大學(xué);2012年
,本文編號:2292662
本文鏈接:http://sikaile.net/kejilunwen/dianlidianqilunwen/2292662.html