分布式光伏發(fā)電功率預(yù)測(cè)及優(yōu)化配置研究
[Abstract]:With the attention of the international community on energy, ecology, climate and other issues, vigorously developing renewable energy has become an important measure to deal with these problems. Solar energy, as a member of renewable energy, has developed rapidly in recent years. Distributed photovoltaic, as the next step of the photovoltaic industry, has the characteristics of flexible application, energy saving, high energy utilization and so on. It is an important part of the distribution link of smart grid. Because of the intermittent and unstable characteristics of photovoltaic output, with the increase of permeability of distributed photovoltaic in distribution network, the structure and operation mode of distribution network will change, in order to reduce the influence on distribution network. It is necessary to predict the short term power of distributed photovoltaic, and to optimize the position and capacity of distributed photovoltaic in distribution network. Therefore, this paper builds a distributed PV short-term power prediction model, forecasts the collected samples and makes error analysis of the results, and establishes a multi-objective optimization model for the distributed photovoltaic optimal configuration. Using the improved multi-objective differential evolution algorithm, the distributed photovoltaic system in standard distribution network is optimized. The main contents are as follows: (1) the composition and classification of photovoltaic power generation system are studied, and the simulation of theoretical model and practical data is carried out. From the point of view of affecting the output of photovoltaic power, the characteristics of photovoltaic power generation are studied, and the input of photovoltaic prediction model is determined. The influence of distributed photovoltaic grid connection on distribution network is analyzed from power flow, power supply reliability, power quality and so on. And the optimization objectives and constraints of the multi-objective optimization model are selected. (2) the basic principle of wavelet transform is studied. The collected photovoltaic power sequence is preprocessed by wavelet transform to obtain the sequence components of the power. The prediction models are established respectively. The principle and structure of ESN neural network are analyzed, and the training method of ESN neural network is clarified. According to the collected photovoltaic data, the structure, input and output parameters of the prediction model are determined, and the WT ESN photovoltaic power prediction model is built. (3) on the matlab platform, the sunny and overcast samples are selected. Four prediction models, ESN,BP,WT ESN and WT BP, are used to predict the output of distributed photovoltaic, and three kinds of error indexes are used to evaluate the prediction results. The simulation results show that compared with the other three models, the prediction curve of, WT ESN is more stable, the trend of change is closer to the actual curve, and the three kinds of error evaluation indexes are all the best. The validity and superiority of WT ESN prediction model are verified. (4) A multi-objective optimization model including distributed photovoltaic cost and operation cost, distribution network active power loss, voltage stability index (VSI) and various constraints is established. The mathematical description of multi-objective optimization problem is introduced. In this paper, the principle and flow of differential evolution algorithm are studied. In view of the traditional differential evolution algorithm relying too much on empirical control parameters, adaptive strategy is integrated into the algorithm. Combined with the concept of Pareto dominance, an improved multi-objective differential evolutionary algorithm (MOSADE. (5) is proposed for the standard distribution of IEEE-33 nodes. The distributed photovoltaic optimal configuration is studied on the matlab platform. The simulation results show that, compared with DE and LDWPSO algorithms, SADE maintains population diversity in the early stage of the algorithm, and improves the convergence speed in the later stage of the algorithm. In the aspect of global optimization, MOSADE is used to effectively configure 1-10 groups of DPV. The results show that the reasonable allocation of DPV can effectively enhance the voltage level of distribution network, reduce the loss of active power network, increase the income of generation, and verify the rationality and validity of the multi-objective optimization model and MOSADE algorithm.
【學(xué)位授予單位】:太原理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TM615
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 王繼東;宋智林;冉冉;;基于改進(jìn)支持向量機(jī)算法的光伏發(fā)電短期功率滾動(dòng)預(yù)測(cè)[J];電力系統(tǒng)及其自動(dòng)化學(xué)報(bào);2016年11期
2 丁明;鮑玉瑩;畢銳;;應(yīng)用改進(jìn)馬爾科夫鏈的光伏出力時(shí)間序列模擬[J];電網(wǎng)技術(shù);2016年02期
3 陳海東;莊平;夏建礦;代文章;逯洋;高奇;陳濤;;基于改進(jìn)螢火蟲算法的分布式電源優(yōu)化配置[J];電力系統(tǒng)保護(hù)與控制;2016年01期
4 彭春華;于蓉;孫惠娟;;基于K-均值聚類多場(chǎng)景時(shí)序特性分析的分布式電源多目標(biāo)規(guī)劃[J];電力自動(dòng)化設(shè)備;2015年10期
5 葉林;陳政;趙永寧;朱倩雯;;基于遺傳算法—模糊徑向基神經(jīng)網(wǎng)絡(luò)的光伏發(fā)電功率預(yù)測(cè)模型[J];電力系統(tǒng)自動(dòng)化;2015年16期
6 黃付順;王倩;何美華;陳前宇;;基于綜合敏感性分析的時(shí)序分布式電源規(guī)劃[J];電力系統(tǒng)保護(hù)與控制;2015年10期
7 陳志寶;丁杰;周海;程序;朱想;;地基云圖結(jié)合徑向基函數(shù)人工神經(jīng)網(wǎng)絡(luò)的光伏功率超短期預(yù)測(cè)模型[J];中國(guó)電機(jī)工程學(xué)報(bào);2015年03期
8 羅建春;晁勤;羅洪;冉鴻;楊杰;羅慶;阿里努爾·阿木提;;基于LVQ-GA-BP神經(jīng)網(wǎng)絡(luò)光伏電站出力短期預(yù)測(cè)[J];電力系統(tǒng)保護(hù)與控制;2014年13期
9 周文越;呂飛鵬;廖小君;;基于人工蜂群算法的分布式電源規(guī)劃[J];電力系統(tǒng)及其自動(dòng)化學(xué)報(bào);2014年05期
10 茆美琴;龔文劍;張榴晨;曹雨;徐海波;;基于EEMD-SVM方法的光伏電站短期出力預(yù)測(cè)[J];中國(guó)電機(jī)工程學(xué)報(bào);2013年34期
相關(guān)會(huì)議論文 前1條
1 代燕杰;孫春艷;王曉泳;劉瀟;楊杰;;基于用戶型分布式光伏發(fā)電并網(wǎng)系統(tǒng)的測(cè)試與分析[A];2013年中國(guó)電機(jī)工程學(xué)會(huì)年會(huì)論文集[C];2013年
相關(guān)博士學(xué)位論文 前6條
1 程杉;含分布式電源的配電網(wǎng)多目標(biāo)優(yōu)化問(wèn)題研究[D];重慶大學(xué);2013年
2 徐瑞東;光伏發(fā)電系統(tǒng)運(yùn)行理論與關(guān)鍵技術(shù)研究[D];中國(guó)礦業(yè)大學(xué);2012年
3 王建民;基于回聲狀態(tài)網(wǎng)絡(luò)的非線性時(shí)間序列預(yù)測(cè)方法研究[D];哈爾濱工業(yè)大學(xué);2011年
4 吳亮紅;多目標(biāo)動(dòng)態(tài)差分進(jìn)化算法及其應(yīng)用研究[D];湖南大學(xué);2011年
5 蘇海軍;量子衍生和禁忌微分進(jìn)化算法研究[D];上海交通大學(xué);2010年
6 韓軍;內(nèi)燃機(jī)的非平穩(wěn)信號(hào)分析方法及其噪聲源小波識(shí)別技術(shù)的研究[D];天津大學(xué);2004年
相關(guān)碩士學(xué)位論文 前10條
1 韓寶珠;基于小波分析和在線極限學(xué)習(xí)機(jī)的滾動(dòng)軸承故障診斷方法研究[D];北京交通大學(xué);2016年
2 秦俊舉;光伏發(fā)電功率預(yù)測(cè)方法的研究[D];西華大學(xué);2014年
3 楊德全;基于神經(jīng)網(wǎng)絡(luò)的光伏發(fā)電系統(tǒng)發(fā)電功率預(yù)測(cè)[D];華北電力大學(xué);2014年
4 劉惠;網(wǎng)絡(luò)安全設(shè)備聯(lián)動(dòng)系統(tǒng)日志預(yù)處理的研究與設(shè)計(jì)[D];華北電力大學(xué);2014年
5 任甜;單相光伏并網(wǎng)發(fā)電系統(tǒng)的控制策略研究[D];中南大學(xué);2013年
6 于安興;風(fēng)電場(chǎng)短期風(fēng)電功率預(yù)測(cè)研究[D];華東理工大學(xué);2013年
7 王世丹;含分布式電源的配電系統(tǒng)無(wú)功優(yōu)化技術(shù)研究[D];北京交通大學(xué);2012年
8 廖春平;基于改進(jìn)遺傳算法行為參數(shù)優(yōu)化的多機(jī)器人編隊(duì)控制[D];中南大學(xué);2012年
9 王源山;考慮分布式電源的配電系統(tǒng)可靠性研究[D];天津大學(xué);2010年
10 李紅巧;基于圖像奇異性的多尺度變換圖像去噪方法的研究[D];江西科技師范學(xué)院;2010年
,本文編號(hào):2283510
本文鏈接:http://sikaile.net/kejilunwen/dianlidianqilunwen/2283510.html