時(shí)變參數(shù)條件下的配電網(wǎng)諧波責(zé)任劃分研究
[Abstract]:With the development of power electronics technology, more and more nonlinear loads are connected to the distribution network, and a large number of harmonics are injected into the power network, which results in the deterioration of power quality. In order to ensure the management of power supply quality can be relied on, it is necessary to reasonably and quantitatively divide the harmonic responsibility of each harmonic source in the distribution network. In the actual power network, there are system harmonic fluctuations, system harmonic impedance changes, user harmonic impedance changes and other parameters of time-varying operating conditions, resulting in the traditional harmonic responsibility division method can not meet the calculation accuracy requirements. Therefore, it is necessary to carry out the research on the distribution network harmonic responsibility division under the condition of time-varying parameters. In this paper, the method of quantitative division of harmonic responsibility under the above three working conditions is studied. The dominant volatility method and the quantile regression method are combined to divide the harmonic responsibility of the harmonic source in the case of harmonic fluctuation of the system. Firstly, the dominant fluctuation method is used to screen the sample of the user-led fluctuation, to eliminate the influence of the harmonic fluctuation of the system, and to estimate the harmonic impedance of the system accurately. The problem of harmonic responsibility division is transformed into the problem of obtaining the intercept of regression equation. The quantile regression method is used to realize the accurate division of harmonic responsibility in the case of harmonic fluctuation of the system. The method is robust. And make full use of the system harmonic current fluctuation law. Through simulation analysis in IEEE 13-bus system, it is verified that the combination of dominant volatility method and quantile regression method has the advantages of high accuracy and strong adaptability under the condition of harmonic fluctuation of the system. The wavelet transform modulus maximum method and the robust global least square regression method are combined to divide the harmonic responsibility of the harmonic source when the harmonic impedance of the system changes. Firstly, the harmonic voltage and harmonic current measurement data are processed by windowing, and the rough estimation of the harmonic impedance is obtained, and the time when the harmonic impedance changes is detected by the wavelet transform modulus maximum method. On the basis of this, the harmonic impedance of the system is estimated by robust global least square regression, and the harmonic responsibility of each section is obtained. Finally, the total harmonic liability index defined in this paper is used to quantitatively evaluate the harmonic responsibility of harmonic sources. The simulation analysis is carried out in the triple-fed system and the IEEE 13-bus system respectively, and the validity and accuracy of the wavelet transform modulus maximum method and the robust global least square regression method in the case of harmonic impedance change are verified. The variable coefficient regression method is used to divide the harmonic responsibility of the harmonic source when the user's harmonic impedance changes. First, the time-varying relation model of harmonic voltage and harmonic current is established, then the regression coefficient of the model is calculated by using the variable coefficient regression method, and the harmonic impedance vector of the system is formed according to the regression coefficient, and the total harmonic responsibility of each harmonic source is calculated. The simulation analysis in IEEE 13-bus system verifies that the variable coefficient regression method can accurately estimate the harmonic impedance and harmonic responsibility of the system when the user's harmonic impedance changes, and can effectively track the variation rule of harmonic impedance. The theoretical research and simulation results show that the three methods proposed in this paper are suitable for the quantitative division of harmonic responsibility under three actual operating conditions, namely, the harmonic fluctuation of the system, the change of the harmonic impedance of the system, and the change of the harmonic impedance of the user. The calculated results are closer to the theoretical values and can provide an important theoretical basis for harmonic supervision and harmonic control in the future.
【學(xué)位授予單位】:西南交通大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TM711
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 康婕;解紹鋒;劉曉菊;魏曉娟;;基于支持向量機(jī)的諧波阻抗估計(jì)方法[J];電力系統(tǒng)保護(hù)與控制;2010年22期
2 王詩(shī)超;沈沉;程建洲;;考慮電流波動(dòng)特性的系統(tǒng)側(cè)諧波阻抗估計(jì)方法[J];電力系統(tǒng)自動(dòng)化;2012年03期
3 蔡景青;;諧波阻抗估計(jì)的方法及應(yīng)用研究[J];電子技術(shù)與軟件工程;2013年22期
4 蘇攀;郭成;易東;;基于中位參數(shù)等價(jià)權(quán)回歸法的諧波阻抗分析[J];云南電力技術(shù);2014年01期
5 蔡景青;;諧波阻抗估計(jì)方法及應(yīng)用[J];農(nóng)村電氣化;2013年S1期
6 華回春;賈秀芳;曹東升;趙成勇;;系統(tǒng)諧波阻抗估計(jì)的極大似然估計(jì)方法[J];中國(guó)電機(jī)工程學(xué)報(bào);2014年10期
7 張安安,楊洪耕;基于畸變波形同步分層估計(jì)諧波阻抗的探討[J];電力系統(tǒng)自動(dòng)化;2003年09期
8 李群湛,王彥東,劉學(xué),陳仕龍,董志杰;基于穩(wěn)態(tài)測(cè)量的電力網(wǎng)絡(luò)諧波阻抗的確定[J];電工技術(shù)雜志;2004年07期
9 劉秀玲;王洪瑞;;電網(wǎng)諧波阻抗的測(cè)量及其修正[J];電力系統(tǒng)及其自動(dòng)化學(xué)報(bào);2007年02期
10 豐衛(wèi)平;電力系統(tǒng)諧波阻抗的測(cè)量計(jì)算法[J];云南電力技術(shù);1999年S1期
相關(guān)會(huì)議論文 前2條
1 王磊;;基于“分組線性回歸法”測(cè)量諧波阻抗[A];中國(guó)高等學(xué)校電力系統(tǒng)及其自動(dòng)化專業(yè)第二十四屆學(xué)術(shù)年會(huì)論文集(下冊(cè))[C];2008年
2 師洪濤;卓放;侯李祥;岳小龍;張東;耿志清;;三相PWM變流器諧波阻抗模型及測(cè)量研究[A];分布式發(fā)電、智能微電網(wǎng)與電能質(zhì)量——第三屆全國(guó)電能質(zhì)量學(xué)術(shù)會(huì)議暨電能質(zhì)量行業(yè)發(fā)展論壇論文集[C];2013年
相關(guān)博士學(xué)位論文 前1條
1 李飛;分布式發(fā)電并網(wǎng)逆變器的虛擬諧波阻抗控制研究[D];合肥工業(yè)大學(xué);2015年
相關(guān)碩士學(xué)位論文 前10條
1 徐玉剛;基于諧波阻抗測(cè)量技術(shù)的配電網(wǎng)三相自適應(yīng)重合閘技術(shù)研究[D];山東大學(xué);2015年
2 韓勁草;有源電力濾波器的諧波檢測(cè)和諧波阻抗估計(jì)[D];北京理工大學(xué);2016年
3 姜昊;電網(wǎng)阻頻特性測(cè)試與辨識(shí)[D];西南交通大學(xué);2016年
4 劉哲;典型干擾性負(fù)荷建模及其諧波污染責(zé)任計(jì)算[D];華北電力大學(xué);2016年
5 陳靜;時(shí)變參數(shù)條件下的配電網(wǎng)諧波責(zé)任劃分研究[D];西南交通大學(xué);2017年
6 張安安;基于畸變波形同步分層估計(jì)諧波阻抗[D];四川大學(xué);2003年
7 王彥東;電網(wǎng)諧波阻抗特性及測(cè)量方法研究[D];西南交通大學(xué);2004年
8 畢會(huì)靜;供電系統(tǒng)諧波辨識(shí)的研究[D];華北電力大學(xué)(河北);2006年
9 蘇攀;牽引變電所阻頻特性的辨識(shí)研究[D];西南交通大學(xué);2014年
10 馬U_瀟;高速電氣化鐵路諧振故障的分析與研究[D];西南交通大學(xué);2012年
,本文編號(hào):2280133
本文鏈接:http://sikaile.net/kejilunwen/dianlidianqilunwen/2280133.html