天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁(yè) > 科技論文 > 電氣論文 >

時(shí)變參數(shù)條件下的配電網(wǎng)諧波責(zé)任劃分研究

發(fā)布時(shí)間:2018-10-18 19:25
【摘要】:隨著電力電子技術(shù)的發(fā)展,越來越多的非線性負(fù)荷接入配電網(wǎng),給電網(wǎng)注入大量的諧波,引起電能質(zhì)量惡化。為保證供電質(zhì)量的治理有據(jù)可依,必須對(duì)配電網(wǎng)中各諧波源的諧波責(zé)任進(jìn)行合理地定量劃分。在實(shí)際電網(wǎng)中,存在系統(tǒng)諧波波動(dòng)、系統(tǒng)諧波阻抗改變、用戶諧波阻抗改變等參數(shù)時(shí)變工況,導(dǎo)致傳統(tǒng)的諧波責(zé)任劃分方法無(wú)法滿足計(jì)算準(zhǔn)確度的要求,因此需要開展時(shí)變參數(shù)條件下的配電網(wǎng)諧波責(zé)任劃分研究。本文研究了上述三種工況下的諧波責(zé)任定量劃分方法。將主導(dǎo)波動(dòng)量法和分位數(shù)回歸法結(jié)合的方法用于劃分系統(tǒng)諧波波動(dòng)情況下諧波源的諧波責(zé)任。首先采用主導(dǎo)波動(dòng)量法,篩選用戶主導(dǎo)的波動(dòng)量樣本,消除系統(tǒng)諧波波動(dòng)帶來的影響,準(zhǔn)確地估計(jì)系統(tǒng)諧波阻抗;在此基礎(chǔ)上,將諧波責(zé)任劃分問題轉(zhuǎn)化為回歸方程截距的求取問題,采用分位數(shù)回歸法實(shí)現(xiàn)了系統(tǒng)諧波波動(dòng)情況下諧波責(zé)任的準(zhǔn)確劃分,該方法穩(wěn)健性強(qiáng),并充分利用了系統(tǒng)諧波電流的波動(dòng)規(guī)律。通過在IEEE 13節(jié)點(diǎn)系統(tǒng)中的仿真分析,驗(yàn)證了主導(dǎo)波動(dòng)量法和分位數(shù)回歸法結(jié)合的方法在系統(tǒng)諧波波動(dòng)的工況下具有準(zhǔn)確性高和適應(yīng)性強(qiáng)的優(yōu)點(diǎn)。將小波變換模極大值法和穩(wěn)健整體最小二乘回歸法結(jié)合的方法用于劃分系統(tǒng)諧波阻抗改變情況下諧波源的諧波責(zé)任。首先對(duì)諧波電壓和諧波電流測(cè)量數(shù)據(jù)進(jìn)行加窗簡(jiǎn)化處理,得到系統(tǒng)諧波阻抗的粗略估值,利用小波變換模極大值法檢測(cè)出系統(tǒng)諧波阻抗發(fā)生改變的時(shí)間,以此對(duì)測(cè)量數(shù)據(jù)進(jìn)行分段處理;在此基礎(chǔ)上,對(duì)每一段的數(shù)據(jù)采用穩(wěn)健整體最小二乘回歸對(duì)系統(tǒng)諧波阻抗進(jìn)行精確估計(jì),進(jìn)而求得每段的諧波責(zé)任。最后,采用文中所定義的總諧波責(zé)任指標(biāo)來定量評(píng)估諧波源的諧波責(zé)任。分別在三饋線系統(tǒng)和IEEE 13節(jié)點(diǎn)系統(tǒng)中進(jìn)行仿真分析,驗(yàn)證了小波變換模極大值法和穩(wěn)健整體最小二乘回歸法結(jié)合的方法在系統(tǒng)諧波阻抗改變情況下的有效性和準(zhǔn)確性。將變系數(shù)回歸法用于劃分用戶諧波阻抗改變情況下諧波源的諧波責(zé)任。首先建立諧波電壓和諧波電流的時(shí)變關(guān)系模型,再利用變系數(shù)回歸法計(jì)算模型的回歸系數(shù),根據(jù)回歸系數(shù)形成系統(tǒng)諧波阻抗向量,并以此計(jì)算各諧波源的總諧波責(zé)任。在IEEE 13節(jié)點(diǎn)系統(tǒng)中進(jìn)行仿真分析,驗(yàn)證了變系數(shù)回歸法在用戶諧波阻抗改變情況下能夠準(zhǔn)確地估計(jì)系統(tǒng)諧波阻抗和諧波責(zé)任,并能有效地跟蹤諧波阻抗的變化規(guī)律。論文所做的理論研究和仿真結(jié)果表明:本文提出的三種方法分別適用于系統(tǒng)諧波波動(dòng)、系統(tǒng)諧波阻抗改變、用戶諧波阻抗改變?nèi)N實(shí)際工況下的諧波責(zé)任定量劃分,計(jì)算結(jié)果更貼近于理論值,能為未來諧波監(jiān)督和諧波治理提供重要的理論依據(jù)。
[Abstract]:With the development of power electronics technology, more and more nonlinear loads are connected to the distribution network, and a large number of harmonics are injected into the power network, which results in the deterioration of power quality. In order to ensure the management of power supply quality can be relied on, it is necessary to reasonably and quantitatively divide the harmonic responsibility of each harmonic source in the distribution network. In the actual power network, there are system harmonic fluctuations, system harmonic impedance changes, user harmonic impedance changes and other parameters of time-varying operating conditions, resulting in the traditional harmonic responsibility division method can not meet the calculation accuracy requirements. Therefore, it is necessary to carry out the research on the distribution network harmonic responsibility division under the condition of time-varying parameters. In this paper, the method of quantitative division of harmonic responsibility under the above three working conditions is studied. The dominant volatility method and the quantile regression method are combined to divide the harmonic responsibility of the harmonic source in the case of harmonic fluctuation of the system. Firstly, the dominant fluctuation method is used to screen the sample of the user-led fluctuation, to eliminate the influence of the harmonic fluctuation of the system, and to estimate the harmonic impedance of the system accurately. The problem of harmonic responsibility division is transformed into the problem of obtaining the intercept of regression equation. The quantile regression method is used to realize the accurate division of harmonic responsibility in the case of harmonic fluctuation of the system. The method is robust. And make full use of the system harmonic current fluctuation law. Through simulation analysis in IEEE 13-bus system, it is verified that the combination of dominant volatility method and quantile regression method has the advantages of high accuracy and strong adaptability under the condition of harmonic fluctuation of the system. The wavelet transform modulus maximum method and the robust global least square regression method are combined to divide the harmonic responsibility of the harmonic source when the harmonic impedance of the system changes. Firstly, the harmonic voltage and harmonic current measurement data are processed by windowing, and the rough estimation of the harmonic impedance is obtained, and the time when the harmonic impedance changes is detected by the wavelet transform modulus maximum method. On the basis of this, the harmonic impedance of the system is estimated by robust global least square regression, and the harmonic responsibility of each section is obtained. Finally, the total harmonic liability index defined in this paper is used to quantitatively evaluate the harmonic responsibility of harmonic sources. The simulation analysis is carried out in the triple-fed system and the IEEE 13-bus system respectively, and the validity and accuracy of the wavelet transform modulus maximum method and the robust global least square regression method in the case of harmonic impedance change are verified. The variable coefficient regression method is used to divide the harmonic responsibility of the harmonic source when the user's harmonic impedance changes. First, the time-varying relation model of harmonic voltage and harmonic current is established, then the regression coefficient of the model is calculated by using the variable coefficient regression method, and the harmonic impedance vector of the system is formed according to the regression coefficient, and the total harmonic responsibility of each harmonic source is calculated. The simulation analysis in IEEE 13-bus system verifies that the variable coefficient regression method can accurately estimate the harmonic impedance and harmonic responsibility of the system when the user's harmonic impedance changes, and can effectively track the variation rule of harmonic impedance. The theoretical research and simulation results show that the three methods proposed in this paper are suitable for the quantitative division of harmonic responsibility under three actual operating conditions, namely, the harmonic fluctuation of the system, the change of the harmonic impedance of the system, and the change of the harmonic impedance of the user. The calculated results are closer to the theoretical values and can provide an important theoretical basis for harmonic supervision and harmonic control in the future.
【學(xué)位授予單位】:西南交通大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TM711

【相似文獻(xiàn)】

相關(guān)期刊論文 前10條

1 康婕;解紹鋒;劉曉菊;魏曉娟;;基于支持向量機(jī)的諧波阻抗估計(jì)方法[J];電力系統(tǒng)保護(hù)與控制;2010年22期

2 王詩(shī)超;沈沉;程建洲;;考慮電流波動(dòng)特性的系統(tǒng)側(cè)諧波阻抗估計(jì)方法[J];電力系統(tǒng)自動(dòng)化;2012年03期

3 蔡景青;;諧波阻抗估計(jì)的方法及應(yīng)用研究[J];電子技術(shù)與軟件工程;2013年22期

4 蘇攀;郭成;易東;;基于中位參數(shù)等價(jià)權(quán)回歸法的諧波阻抗分析[J];云南電力技術(shù);2014年01期

5 蔡景青;;諧波阻抗估計(jì)方法及應(yīng)用[J];農(nóng)村電氣化;2013年S1期

6 華回春;賈秀芳;曹東升;趙成勇;;系統(tǒng)諧波阻抗估計(jì)的極大似然估計(jì)方法[J];中國(guó)電機(jī)工程學(xué)報(bào);2014年10期

7 張安安,楊洪耕;基于畸變波形同步分層估計(jì)諧波阻抗的探討[J];電力系統(tǒng)自動(dòng)化;2003年09期

8 李群湛,王彥東,劉學(xué),陳仕龍,董志杰;基于穩(wěn)態(tài)測(cè)量的電力網(wǎng)絡(luò)諧波阻抗的確定[J];電工技術(shù)雜志;2004年07期

9 劉秀玲;王洪瑞;;電網(wǎng)諧波阻抗的測(cè)量及其修正[J];電力系統(tǒng)及其自動(dòng)化學(xué)報(bào);2007年02期

10 豐衛(wèi)平;電力系統(tǒng)諧波阻抗的測(cè)量計(jì)算法[J];云南電力技術(shù);1999年S1期

相關(guān)會(huì)議論文 前2條

1 王磊;;基于“分組線性回歸法”測(cè)量諧波阻抗[A];中國(guó)高等學(xué)校電力系統(tǒng)及其自動(dòng)化專業(yè)第二十四屆學(xué)術(shù)年會(huì)論文集(下冊(cè))[C];2008年

2 師洪濤;卓放;侯李祥;岳小龍;張東;耿志清;;三相PWM變流器諧波阻抗模型及測(cè)量研究[A];分布式發(fā)電、智能微電網(wǎng)與電能質(zhì)量——第三屆全國(guó)電能質(zhì)量學(xué)術(shù)會(huì)議暨電能質(zhì)量行業(yè)發(fā)展論壇論文集[C];2013年

相關(guān)博士學(xué)位論文 前1條

1 李飛;分布式發(fā)電并網(wǎng)逆變器的虛擬諧波阻抗控制研究[D];合肥工業(yè)大學(xué);2015年

相關(guān)碩士學(xué)位論文 前10條

1 徐玉剛;基于諧波阻抗測(cè)量技術(shù)的配電網(wǎng)三相自適應(yīng)重合閘技術(shù)研究[D];山東大學(xué);2015年

2 韓勁草;有源電力濾波器的諧波檢測(cè)和諧波阻抗估計(jì)[D];北京理工大學(xué);2016年

3 姜昊;電網(wǎng)阻頻特性測(cè)試與辨識(shí)[D];西南交通大學(xué);2016年

4 劉哲;典型干擾性負(fù)荷建模及其諧波污染責(zé)任計(jì)算[D];華北電力大學(xué);2016年

5 陳靜;時(shí)變參數(shù)條件下的配電網(wǎng)諧波責(zé)任劃分研究[D];西南交通大學(xué);2017年

6 張安安;基于畸變波形同步分層估計(jì)諧波阻抗[D];四川大學(xué);2003年

7 王彥東;電網(wǎng)諧波阻抗特性及測(cè)量方法研究[D];西南交通大學(xué);2004年

8 畢會(huì)靜;供電系統(tǒng)諧波辨識(shí)的研究[D];華北電力大學(xué)(河北);2006年

9 蘇攀;牽引變電所阻頻特性的辨識(shí)研究[D];西南交通大學(xué);2014年

10 馬U_瀟;高速電氣化鐵路諧振故障的分析與研究[D];西南交通大學(xué);2012年



本文編號(hào):2280133

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/dianlidianqilunwen/2280133.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶35706***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com
亚洲欧美天堂精品在线| 视频在线免费观看你懂的| 国产精品午夜福利免费阅读| 国产亚洲欧美日韩国亚语| 国产精品人妻熟女毛片av久| 国产精品日韩精品一区| 中文字幕禁断介一区二区| 欧洲偷拍视频中文字幕| 视频在线播放你懂的一区| 免费福利午夜在线观看| 福利新区一区二区人口| 手机在线观看亚洲中文字幕| 亚洲国产精品久久琪琪| 九九热精彩视频在线免费| 国产午夜精品美女露脸视频| 亚洲另类欧美综合日韩精品| 欧美日韩国产成人高潮| 在线日韩中文字幕一区| 婷婷色国产精品视频一区| 国产三级欧美三级日韩三级 | 久久女同精品一区二区| 国产午夜福利一区二区| 91福利视频日本免费看看| 欧美日韩综合在线精品| 99热在线精品视频观看| 精品国产品国语在线不卡| 免费啪视频免费欧美亚洲| 国产av精品高清一区二区三区| 国产精品激情对白一区二区| 欧美日韩一区二区综合| 精品女同在线一区二区| 成人精品日韩专区在线观看| 国产一区二区三区香蕉av| 在线日本不卡一区二区| 日本人妻精品中文字幕不卡乱码 | 欧美激情床戏一区二区三| 精品日韩国产高清毛片| 亚洲a码一区二区三区| 国产不卡免费高清视频| 久久热九九这里只有精品| 国产精品午夜性色视频|