百萬超超臨界機組汽輪機抽汽回熱系統(tǒng)能效評價與診斷的研究
[Abstract]:The core and difficulty of energy saving optimization of steam turbine extraction recuperation system lies in the determination of the benchmark state of energy efficiency index of extraction steam recovery system. The complex boundary conditions and the coupling problem between energy efficiency indexes have brought great challenges to the optimization of energy conservation of steam turbine extraction heat recovery system. At present, the reference value of the key energy efficiency index of steam turbine extraction recuperation system is usually determined only by the design value, the calculation value under off-condition or the thermal test value, and each method has its limitations. With the change of unit operating condition and equipment performance state, the reference value can not match the actual operation state of the extraction steam recovery system, so the operation guidance is greatly restricted, and the real cause of the reduction of energy efficiency level can not be found. The data mining method based on the massive historical data of steam turbine extraction recuperation system can well match the actual operating state of the unit, so it can determine the actual energy efficiency index reference state of the extraction regenerative system under the target working condition. In order to solve the problem of variable and complex boundary conditions, multiple coupled energy efficiency indexes and different indexes in data mining of extraction steam recuperation system. In this paper, the data mining method based on k-means clustering is used to extract the actual energy efficiency standard state of the extraction regenerative system under the target working condition. But the datum state of energy efficiency index based on data mining is affected by the operation boundary condition and the actual equipment state, which mainly reflects the operating level of the operator, but does not reflect the standard state of the equipment performance under the target working condition. Therefore, according to the actual situation of the extraction heat recovery system, this paper modifies the energy efficiency index which can reflect the equipment performance by further constructing the benchmark state model of the equipment performance index. Thus, the reference state of the energy efficiency index of the whole steam turbine recovery system is obtained, and the consumption difference factor analysis of the key energy efficiency index is completed. At the same time, based on mechanism and Ebislon simulation modeling method, the standard value and consumption factor of end difference and feed water temperature are verified, which provides the basis for energy consumption analysis and energy efficiency diagnosis of steam turbine recovery system under different working conditions. Finally, based on the research of the energy efficiency benchmark state of the extraction steam recovery system, the energy efficiency analysis, evaluation and diagnosis system of the extraction steam recovery system are designed and studied. The main energy efficiency indexes affecting the energy consumption of the recovery system of a 1000MW steam turbine are found through the analysis of the consumption difference factor. The optimization knowledge base based on the energy efficiency index is used to guide the optimization and adjustment of the energy efficiency index. Finally, the purpose of improving the energy efficiency of the extraction steam recuperator system is achieved.
【學位授予單位】:華北電力大學(北京)
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:TM621.3
【參考文獻】
相關期刊論文 前10條
1 王寧玲;楊勇平;楊志平;;多變邊界條件下火電機組能耗基準狀態(tài)診斷[J];中國電機工程學報;2013年26期
2 楊勇平;楊志平;徐鋼;王寧玲;;中國火力發(fā)電能耗狀況及展望[J];中國電機工程學報;2013年23期
3 陸松;;熱力學分析在鍋爐系統(tǒng)中的應用[J];中小企業(yè)管理與科技(上旬刊);2013年02期
4 楊志平;楊勇平;王寧玲;;1000MW汽輪機缸效率能耗敏度分析[J];中國電機工程學報;2012年26期
5 李慧君;高麗莎;;火力發(fā)電廠加熱器端差應達值的確定[J];汽輪機技術;2012年02期
6 于淑梅;劉佳琪;常澍平;郭江龍;;回熱加熱器變工況端差基準值研究[J];發(fā)電設備;2010年03期
7 李娜;黃孝彬;田志強;隋麗穎;;生產(chǎn)過程數(shù)據(jù)穩(wěn)定性判斷的一種方法[J];華電技術;2010年01期
8 牛成林;劉吉臻;馬永光;李建強;;基于增量數(shù)據(jù)挖掘的氧量最優(yōu)值確定[J];中國電機工程學報;2009年35期
9 周小力;楊慧慈;唐佳明;;模糊綜合評價法在煙氣脫硫技術選型中的應用[J];計算機與應用化學;2008年03期
10 余愚;孫海山;蔣永華;;液壓系統(tǒng)齒輪泵故障樹分析[J];機床與液壓;2007年09期
相關會議論文 前1條
1 馮春暉;陳彥橋;劉金琨;;數(shù)據(jù)挖掘技術在火電機組運行參數(shù)優(yōu)化中的應用[A];中國自動化學會控制理論專業(yè)委員會B卷[C];2011年
相關博士學位論文 前5條
1 冉鵬;基于動態(tài)數(shù)據(jù)挖掘的電站熱力系統(tǒng)運行優(yōu)化方法研究[D];華北電力大學;2012年
2 王寧玲;基于數(shù)據(jù)挖掘的大型燃煤發(fā)電機組節(jié)能診斷優(yōu)化理論與方法研究[D];華北電力大學(北京);2011年
3 牛成林;增量數(shù)據(jù)挖掘及其在電站運行優(yōu)化中的理論研究及應用[D];華北電力大學(北京);2010年
4 王惠杰;基于混合模型的機組狀態(tài)重構及運行優(yōu)化研究[D];華北電力大學(河北);2009年
5 李建強;基于數(shù)據(jù)挖掘的電站運行優(yōu)化理論研究與應用[D];華北電力大學(河北);2006年
相關碩士學位論文 前5條
1 王曉璐;火電機組能效評價體系探究[D];華北電力大學;2012年
2 嚴亙暉;火電廠熱工過程的預測控制方法研究[D];浙江大學;2011年
3 李宗山;機組經(jīng)濟運行模式數(shù)據(jù)挖掘系統(tǒng)的研究與開發(fā)[D];華北電力大學(北京);2011年
4 鄭西西;基于關聯(lián)規(guī)則的火電廠優(yōu)化目標值確定的研究[D];華北電力大學;2011年
5 呂冰;企業(yè)能源審計與可再生能源利用[D];天津大學;2008年
,本文編號:2274177
本文鏈接:http://sikaile.net/kejilunwen/dianlidianqilunwen/2274177.html