天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > 電氣論文 >

基于D-S證據(jù)融合的風(fēng)力發(fā)電機(jī)組的故障預(yù)測

發(fā)布時間:2018-10-12 21:12
【摘要】:隨著不可再生能源的快速消耗,能源問題已經(jīng)成為人類迫切需要解決的需求,風(fēng)能因?yàn)槌掷m(xù)可再生而成為備受注目的清潔能源。風(fēng)力發(fā)電機(jī)是完成能量轉(zhuǎn)換的關(guān)鍵部件,而風(fēng)力發(fā)電機(jī)的故障診斷和維護(hù)是保障風(fēng)機(jī)穩(wěn)定正常運(yùn)行的首要條件。風(fēng)力發(fā)電機(jī)往往裝在人跡罕至的極端環(huán)境或者海平面上,傳統(tǒng)的設(shè)備維修都是等到風(fēng)機(jī)損壞之后再派人過去維修,這樣不僅浪費(fèi)大量的人力物力,有時候會因?yàn)轱L(fēng)機(jī)長期帶病運(yùn)行,最終造成嚴(yán)重的不可逆的設(shè)備故障,所以如何能對風(fēng)機(jī)的故障進(jìn)行早期預(yù)測成為一個值得研究的問題。本課題在大連駝山風(fēng)場積累的歷史數(shù)據(jù)和故障日志基礎(chǔ)上,主要針對雙饋異步發(fā)電機(jī)的常見故障進(jìn)行故障預(yù)測,待識別的風(fēng)機(jī)故障包括定子繞組短路,轉(zhuǎn)子繞組短路,軸承損壞和轉(zhuǎn)子偏心,前兩個屬于電氣故障,而后兩個屬于機(jī)械故障。通過數(shù)據(jù)選取和小波包分解提取振動和電流頻域特征向量,然后通過D-S證據(jù)融合理論建立故障預(yù)測模型。傳統(tǒng)的故障診斷是通過分析正處在故障中機(jī)器運(yùn)行參數(shù)建立診斷模型,因此所建立的診斷模型只適用于已經(jīng)處于故障狀態(tài)的風(fēng)機(jī)。本文的方法是選取風(fēng)機(jī)出現(xiàn)故障一個小時之前的運(yùn)行數(shù)據(jù),此時風(fēng)機(jī)雖然仍然處于運(yùn)行狀態(tài),但是振動參數(shù)和電流參數(shù)已經(jīng)出現(xiàn)異常,屬于帶病運(yùn)行狀態(tài),提早發(fā)現(xiàn)異常就可以提前停機(jī),防止風(fēng)機(jī)持續(xù)運(yùn)行造成不可逆的損壞,同時預(yù)測出的故障類型對維修人員也有較大的參考。針對傳統(tǒng)風(fēng)機(jī)故障診斷中采用振動信號構(gòu)造單個特征空間的故障預(yù)測的不足,本文將電流信號引入了故障預(yù)測,并引入了基于D-S證據(jù)融合的故障預(yù)測模型,首先在振動信號和電流信號上分別構(gòu)造了兩個后驗(yàn)概率支持向量機(jī),將兩個支持向量機(jī)的概率輸出作為證據(jù)融合的基本概率分配,根據(jù)Dempster融合規(guī)則計算融合之后的概率分配,針對融合過程中證據(jù)之間的沖突因子太大容易導(dǎo)致融合失敗的問題,本文提出了用局部可信度來修正融合之前的基本概率分配,局部可信度表示支持向量機(jī)對每種故障的預(yù)測準(zhǔn)確率,實(shí)驗(yàn)證實(shí)經(jīng)過局部可信度修正過基本概率分配的多個證據(jù)在融合過程中沖突因子更低,基于D-S證據(jù)融合模型相比于非融合模型對風(fēng)機(jī)四種故障均有更高的預(yù)測準(zhǔn)確率。
[Abstract]:With the rapid consumption of non-renewable energy, the energy problem has become an urgent need to be solved. Wind energy has become the focus of attention because of renewable energy. Wind turbine is the key component to complete the energy conversion, and the fault diagnosis and maintenance of wind turbine is the primary condition to ensure the stable and normal operation of wind turbine. Wind turbines are often installed in isolated extreme environments or at sea level. Traditional equipment maintenance is to wait until the fan is damaged before sending someone to repair it. This not only wastes a lot of manpower and material resources, Sometimes it is necessary to study how to predict the fault of fan in the early stage because the fan runs for a long time and finally causes the serious irreversible equipment failure. Based on the historical data and fault log accumulated in Dalian hump wind field, this paper mainly predicts the common faults of doubly-fed asynchronous generator. The fan faults to be identified include stator winding short circuit, rotor winding short circuit, and rotor winding short circuit. Bearing damage and rotor eccentricity, the first two electrical faults, the latter two mechanical faults. The eigenvector in vibration and current frequency domain is extracted by data selection and wavelet packet decomposition, and then the fault prediction model is established by D-S evidence fusion theory. The traditional fault diagnosis model is established by analyzing the operating parameters of the machine in the process of fault, so the diagnosis model is only suitable for the fan which is already in the fault state. The method of this paper is to select the operation data of the fan one hour before the failure. At this time, the fan is still in operation state, but the vibration and current parameters have been abnormal and belong to the diseased running state. Early detection of abnormal can stop the fan in advance to prevent irreversible damage caused by the continuous operation of the fan. At the same time, the predicted fault type also has a large reference for the maintenance personnel. Aiming at the shortcoming of using vibration signal to construct a single feature space for fault prediction in traditional fan fault diagnosis, the current signal is introduced into fault prediction, and a fault prediction model based on D-S evidence fusion is introduced. Firstly, two posterior probabilistic support vector machines are constructed on the vibration signal and the current signal respectively. The probability output of the two SVM is regarded as the basic probability distribution of evidence fusion, and the probability distribution after fusion is calculated according to the Dempster fusion rule. In view of the problem that the conflict factor between the evidence in the fusion process is too large to lead to the failure of fusion, this paper proposes to modify the basic probability allocation before fusion by using local credibility. The local reliability represents the prediction accuracy of each fault by support vector machine. The experimental results show that the conflict factor is lower in the fusion process when the local reliability is corrected for the basic probability allocation. Compared with the non-fusion model, D-S evidence fusion model has higher prediction accuracy for four kinds of fan faults.
【學(xué)位授予單位】:沈陽工業(yè)大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TM315

【參考文獻(xiàn)】

相關(guān)期刊論文 前10條

1 趙勇;韓斌;房剛利;;風(fēng)力發(fā)電機(jī)狀態(tài)監(jiān)測與故障診斷技術(shù)綜述[J];熱力發(fā)電;2016年10期

2 鄭含博;王偉;李曉綱;王立楠;李予全;韓金華;;基于多分類最小二乘支持向量機(jī)和改進(jìn)粒子群優(yōu)化算法的電力變壓器故障診斷方法[J];高電壓技術(shù);2014年11期

3 任學(xué)平;龐震;邢義通;辛向志;;改進(jìn)小波包的滾動軸承故障診斷[J];河南科技大學(xué)學(xué)報(自然科學(xué)版);2014年05期

4 張成軍;陰妍;鮑久圣;紀(jì)洋洋;;多源信息融合故障診斷方法研究進(jìn)展[J];河北科技大學(xué)學(xué)報;2014年03期

5 丘世因;袁銳波;;基于小波包分解的滾動軸承故障信號頻域特征提取方法研究[J];機(jī)械與電子;2014年05期

6 張永建;孫燕芳;邢龍超;;基于小波包分解的滾動軸承故障診斷方法的研究[J];煤礦機(jī)械;2014年05期

7 焦斌;郝云鎖;;基于合成核支持向量機(jī)的風(fēng)力發(fā)電機(jī)故障診斷[J];江南大學(xué)學(xué)報(自然科學(xué)版);2013年05期

8 沈艷霞;李帆;;風(fēng)力發(fā)電系統(tǒng)故障診斷方法綜述[J];控制工程;2013年05期

9 胡金海;余治國;翟旭升;彭靖波;任立通;;基于改進(jìn)D-S證據(jù)理論的航空發(fā)動機(jī)轉(zhuǎn)子故障決策融合診斷研究[J];航空學(xué)報;2014年02期

10 雷蕾;王曉丹;;結(jié)合SVM與DS證據(jù)理論的信息融合分類方法[J];計算機(jī)工程與應(yīng)用;2013年11期

,

本文編號:2267611

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/dianlidianqilunwen/2267611.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶0bce7***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com
粗暴蹂躏中文一区二区三区| 亚洲综合色在线视频香蕉视频| 91麻豆精品欧美视频| 黄色美女日本的美女日人| 欧美日韩校园春色激情偷拍| 国产一区二区三区四区免费| 黄色日韩欧美在线观看| 亚洲熟妇熟女久久精品| 中文字幕亚洲精品乱码加勒比| 色婷婷人妻av毛片一区二区三区| 日韩中文无线码在线视频| 免费亚洲黄色在线观看| 久久国产成人精品国产成人亚洲 | 欧美日韩黑人免费观看| 亚洲熟女熟妇乱色一区| 日本特黄特色大片免费观看| 亚洲中文在线男人的天堂| 久久综合亚洲精品蜜桃| 国产熟女一区二区三区四区| 激情五月激情婷婷丁香| 欧美日不卡无在线一区| 日韩精品视频高清在线观看| 欧美精品久久99九九| 亚洲在线观看福利视频| 丝袜诱惑一区二区三区| 美女激情免费在线观看| 国内九一激情白浆发布| 内射精品欧美一区二区三区久久久| 国产精品香蕉在线的人| 欧美性高清一区二区三区视频| 97人妻精品一区二区三区男同| 国产成人精品一区二区三区| 亚洲一区精品二人人爽久久| 日韩不卡一区二区在线| 欧美黄色黑人一区二区| 日韩女优视频国产一区| 污污黄黄的成年亚洲毛片| 在线欧洲免费无线码二区免费| 欧美日韩精品久久第一页| 国产精品一区二区三区黄色片| 五月综合激情婷婷丁香|