變壓器內(nèi)部溫升計(jì)算與運(yùn)行方式優(yōu)化
[Abstract]:The hot spot temperature of transformer winding and the top oil temperature are the key parameters to measure the thermal state of transformer. It is important to calculate and predict the operation safety and insulation life of transformer. In this paper, a great deal of work has been done on the calculation of internal temperature rise of transformers, the calculation of heat dissipation efficiency and the optimization of operation mode taking into account the loss of insulation life. In this paper, the internal temperature rise calculation of traditional oil-immersed power transformer and a split cooling transformer for underground substations are studied. Aiming at the calculation of the top oil temperature of the traditional power transformer, two models are established in this paper: point prediction model and interval prediction model. Firstly, combining the advantages of semi-physical model and data-driven model, a top-level oil-temperature point prediction model based on kerne1 extreme 1earning machine,KELM error prediction compensation is established. The accuracy of the model is higher than that of the single semi-physical model and data-driven model. Then, a prediction model of transformer top oil temperature interval based on KELM and Bootstrap method is established. The upper and lower limit values of the prediction interval can be used as conservative and optimistic estimates of the top layer oil temperature of transformer, respectively. The conservative estimate is more suitable for guiding the operation of transformer. Finally, the calculation of internal temperature rise of split cooling transformer is studied. Split cooling transformers are generally used in underground substations where the transformer body is underground and the radiator is in the ground environment. Because of the difference in structure, the traditional calculation model of internal temperature rise of transformer is no longer suitable for this type of transformer, based on the analysis of the heat dissipation principle of this type transformer and the comparison with the traditional transformer heat path model, The heat path calculation model of oil-immersed self-cooling split cooling transformer is presented. The validity of the proposed model is verified by the temperature rise test data of the split cooling transformer. In this paper, a method for calculating the heat dissipation efficiency of transformers based on reverse solution of thermal resistance is established. Using the on-line monitoring data of the top oil temperature, the particle swarm optimization (partic1e swarm optimization,PSO) algorithm is used to reverse solve the thermal resistance of the top layer oil temperature to the environment. According to the ratio of actual thermal resistance to outgoing thermal resistance and the change trend of actual thermal resistance, the heat dissipation capacity of transformer is evaluated in order to find out the change of heat dissipation efficiency of transformer in time and to provide auxiliary information for the operation and maintenance of heat dissipation system. In this paper, it is put forward that reducing transformer thermal life loss is one of the objectives of transformer economic operation. Combined with the traditional objective of minimum comprehensive loss, the optimization model of multi-objective transformer operation mode is established. Based on the dual period control strategy of transformer, PSO algorithm is used to solve the optimal switching time of standby transformer. This paper provides a reference method for the economic operation of transformers from the angle of reducing thermal life loss.
【學(xué)位授予單位】:山東大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TM41
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 王小紅;;新型R型變壓器的結(jié)構(gòu)性能與應(yīng)用[J];青?萍;2006年01期
2 張惠忠;;變壓器節(jié)電的主要途徑[J];電工技術(shù);1992年10期
3 沈建;R型變壓器[J];電工技術(shù)雜志;1998年02期
4 萬善良;對(duì)變壓器電動(dòng)力計(jì)算的想法[J];供用電;2001年04期
5 戴慶忠;;電機(jī)史話(十三) 第六章 變壓器發(fā)展史 第二節(jié) 變壓器技術(shù)的發(fā)展(下)[J];東方電機(jī);2001年02期
6 王曉飛;;微型變壓器的現(xiàn)狀與發(fā)展[J];電源技術(shù)應(yīng)用;2001年07期
7 胡宗波;張波;;正激變換器中變壓器的設(shè)計(jì)[J];電源技術(shù)應(yīng)用;2002年11期
8 郭振巖;變壓器抗地震性能的研究[J];變壓器;2005年S1期
9 劉燕;馮健輝;蔡定國(guó);陳震;;采用科學(xué)降噪方法實(shí)現(xiàn)變壓器耗材的節(jié)省[J];變壓器;2006年01期
10 沈爭(zhēng);陳輝明;蔣大鵬;;無接觸式變壓器的建模分析及設(shè)計(jì)[J];電氣應(yīng)用;2007年01期
相關(guān)會(huì)議論文 前6條
1 戴慶忠;;變壓器發(fā)明簡(jiǎn)史[A];四川省電工技術(shù)學(xué)會(huì)電機(jī)專業(yè)委員會(huì)二○○一年第十三屆學(xué)術(shù)年會(huì)論文集[C];2001年
2 周德波;;變壓器內(nèi)部聲響反應(yīng)的故障判斷及處理方法[A];2010年云南電力技術(shù)論壇論文集(文摘部分)[C];2010年
3 彭美明;;R型鐵心變壓器[A];中國(guó)電子學(xué)會(huì)第七屆學(xué)術(shù)年會(huì)論文集[C];2001年
4 李茜;郭玉英;魏東梅;;平面變壓器的繞組設(shè)計(jì)與分析[A];中國(guó)自動(dòng)化學(xué)會(huì)、中國(guó)儀器儀表學(xué)會(huì)2004年西南三省一市自動(dòng)化與儀器儀表學(xué)術(shù)年會(huì)論文集[C];2004年
5 于慶廣;賓雄輝;王曉慧;楊玉崗;;平面變壓器及平面集成磁技術(shù)[A];第五屆中國(guó)功能材料及其應(yīng)用學(xué)術(shù)會(huì)議論文集Ⅰ[C];2004年
6 史潤(rùn)水;;上萬伏耐高壓小型變壓器的研制——為核武器試驗(yàn)做出過貢獻(xiàn)的產(chǎn)品[A];山西省創(chuàng)造學(xué)會(huì)創(chuàng)立大會(huì)暨首屆學(xué)術(shù)交流會(huì)議專輯[C];2001年
相關(guān)重要報(bào)紙文章 前2條
1 黃利;變壓器結(jié)構(gòu)的發(fā)展趨勢(shì)[N];中國(guó)國(guó)門時(shí)報(bào)(中國(guó)出入境檢驗(yàn)疫報(bào));2001年
2 劉和平;國(guó)內(nèi)最大容量直流電弧爐變壓器通過國(guó)家級(jí)鑒定[N];世界金屬導(dǎo)報(bào);2010年
相關(guān)博士學(xué)位論文 前3條
1 蔣樹農(nóng);壓電俘能器和變壓器的結(jié)構(gòu)優(yōu)化設(shè)計(jì)[D];中南大學(xué);2010年
2 余厲陽;微型壓電變壓器的研究[D];浙江大學(xué);2005年
3 邵維維;壓電變壓器接觸散熱裝置的研究[D];中國(guó)科學(xué)技術(shù)大學(xué);2012年
相關(guān)碩士學(xué)位論文 前10條
1 吳汶釗;140kVA輔助電源平臺(tái)高阻抗變壓器的設(shè)計(jì)與仿真[D];西南交通大學(xué);2015年
2 俞潺潺;大型油浸式自冷變壓器溫升的研究[D];浙江工業(yè)大學(xué);2014年
3 程冉;微波射頻變壓器的建模與參數(shù)提取[D];華東師范大學(xué);2016年
4 沈陽;諧波隔離四繞組電力變壓器研究[D];湖南大學(xué);2015年
5 倪浩;徑向復(fù)合盤型壓電陶瓷變壓器的等效電路和特性研究[D];陜西師范大學(xué);2016年
6 亓孝武;變壓器內(nèi)部溫升計(jì)算與運(yùn)行方式優(yōu)化[D];山東大學(xué);2017年
7 朱耿峰;半導(dǎo)體平面變壓器的設(shè)計(jì)研究[D];天津大學(xué);2009年
8 梁振健;電力電子平面變壓器熱設(shè)計(jì)方法研究[D];福州大學(xué);2002年
9 林風(fēng);基于軟件集成平臺(tái)的平面變壓器優(yōu)化設(shè)計(jì)與仿真的研究[D];重慶大學(xué);2006年
10 劉建波;高準(zhǔn)確度比例變壓器的設(shè)計(jì)、構(gòu)造和校驗(yàn)[D];青島大學(xué);2012年
,本文編號(hào):2224146
本文鏈接:http://sikaile.net/kejilunwen/dianlidianqilunwen/2224146.html