三相模塊化容錯(cuò)永磁電機(jī)研究
[Abstract]:Distributed drive electric vehicle (DEAV) has become a research hotspot in recent years because of its good acceleration performance and maneuverability. As the core component of distributed driving electric vehicle, its reliability is related to the safety of vehicle and personnel. In order to improve the fault-tolerant ability of wheel hub motor system and solve the problems of complex structure and high control algorithm of fault tolerant motor in the past, a three-phase modular fault-tolerant hub motor was proposed by combining modularization idea with motor design. This paper focuses on several key technical problems of three-phase modularized fault-tolerant permanent magnet motor, mainly in the following aspects: firstly, aiming at the special structural characteristics of three-phase modularized fault-tolerant permanent magnet motor, The mathematical model and working principle of the motor are studied. Modular fault-tolerant permanent magnet motor has the characteristics of stator modularization, and all modules share the rotor. Considering the modularization characteristic of the motor structure, the flux chain equation and voltage equation are given in the form of block matrix, and the self-inductance and mutual-inductance variation laws are deduced at the same time. Secondly, the three-phase modular fault-tolerant permanent magnet motor is different from the conventional three-phase permanent magnet motor. In this paper, the electromagnetic scheme selection and optimization methods are studied. The selection principle of modularized fault tolerant motor stator electromagnetic scheme is given by comparing the pole-slot matching and different winding forms of multi-seed motor and combining with the corresponding application background. On this basis, considering that the short-circuit fault has a great impact on the performance of the motor, an analytical method and finite element simulation are used to study the short-circuit of the winding. After the stator scheme is determined, the rotor magnetic circuit structure is analyzed, and the torque ripple principle is analyzed by analytic method, and the torque output of the motor is optimized by the method of permanent magnet eccentricity. Then, the fault-tolerant strategy of three phase modularized fault tolerant motor in different fault cases is studied. Through the analytical analysis of rotating magnetodynamic force, the compensation strategy for one phase open circuit fault is studied to solve the problem that fault module fault tolerant current is too large. Theoretical analysis and simulation verification of unbalanced magnetic pull force and torque ripple in one phase open circuit fault tolerance are carried out, and the method of reducing the problem is discussed. According to the simulation analysis of the operation characteristics of sub-modules, the torque ripple of sub-module fault tolerant is deduced analytically and verified by simulation. The fault-tolerant strategy of modularized fault-tolerant permanent magnet motor after winding short-circuit fault is studied to solve the problems of winding overheating and torque ripple caused by short-circuit fault. By using the finite element analysis method and according to the actual situation, the inter-turn short circuit fault between the winding conductors is studied, and the method to suppress the inter-turn short circuit fault of the conductor is put forward. Finally, according to the different working conditions of the three-phase modularized fault-tolerant motor, a three-dimensional temperature field model is established, and the temperature rise of the motor under the normal and fault condition and the corresponding fault-tolerant strategy is analyzed, and the temperature distribution of the motor under normal and fault-tolerant conditions is obtained.
【學(xué)位授予單位】:哈爾濱工業(yè)大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TM351
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 司賓強(qiáng);朱紀(jì)洪;吉敬華;;四相永磁容錯(cuò)電機(jī)短路故障容錯(cuò)策略[J];控制與決策;2014年08期
2 鄭萍;唐佩倫;隋義;王鵬飛;王子安;;電動(dòng)汽車用五相永磁同步電機(jī)的容錯(cuò)控制策略[J];電機(jī)與控制學(xué)報(bào);2013年10期
3 司賓強(qiáng);吉敬華;朱紀(jì)洪;范勇;;四相永磁容錯(cuò)電機(jī)的兩種容錯(cuò)控制方法[J];控制與決策;2013年07期
4 鄭萍;雷雨;吳帆;隋義;王鵬飛;;電動(dòng)汽車用六相永磁容錯(cuò)電機(jī)的分析和設(shè)計(jì)[J];電機(jī)與控制學(xué)報(bào);2013年06期
5 趙品志;楊貴杰;李勇;;五相永磁同步電動(dòng)機(jī)單相開路故障的容錯(cuò)控制策略[J];中國電機(jī)工程學(xué)報(bào);2011年24期
6 趙品志;楊貴杰;李勇;;基于雙同步旋轉(zhuǎn)坐標(biāo)系的五相永磁同步電動(dòng)機(jī)三次諧波電流抑制方法[J];中國電機(jī)工程學(xué)報(bào);2011年12期
7 郝振洋;胡育文;黃文新;余文濤;許順;;永磁容錯(cuò)電機(jī)最優(yōu)電流直接控制策略[J];中國電機(jī)工程學(xué)報(bào);2011年06期
8 趙品志;楊貴杰;李勇;;三次諧波注入式五相永磁同步電機(jī)轉(zhuǎn)矩密度優(yōu)化[J];中國電機(jī)工程學(xué)報(bào);2010年33期
9 郝振洋;胡育文;黃文新;余文濤;許順;;轉(zhuǎn)子磁鋼離心式六相十極永磁容錯(cuò)電機(jī)及控制策略[J];中國電機(jī)工程學(xué)報(bào);2010年30期
10 薛山;溫旭輝;王又瓏;;多相永磁同步電機(jī)多維控制技術(shù)[J];電工技術(shù)學(xué)報(bào);2008年09期
相關(guān)博士學(xué)位論文 前6條
1 陳前;內(nèi)嵌式永磁容錯(cuò)電機(jī)的設(shè)計(jì)、分析與控制[D];江蘇大學(xué);2015年
2 孟超;雙三相永磁同步電機(jī)驅(qū)動(dòng)系統(tǒng)的研究[D];湖南大學(xué);2012年
3 王晉;多相永磁電機(jī)的理論分析及其控制研究[D];華中科技大學(xué);2010年
4 郝振洋;六相永磁容錯(cuò)電機(jī)及其控制系統(tǒng)的設(shè)計(jì)和研究[D];南京航空航天大學(xué);2010年
5 薛山;多相永磁同步電機(jī)驅(qū)動(dòng)技術(shù)研究[D];中國科學(xué)院研究生院(電工研究所);2006年
6 歐陽紅林;多相永磁同步電動(dòng)機(jī)調(diào)速系統(tǒng)控制方法的研究[D];湖南大學(xué);2005年
,本文編號:2220294
本文鏈接:http://sikaile.net/kejilunwen/dianlidianqilunwen/2220294.html