小破口失水事故工況下CAP1400核主泵氣液兩相流模擬
[Abstract]:Reactor coolant pump (nuclear main pump) is one of the most important equipments in nuclear power plant, which provides the driving pressure head for nuclear reactor. In this paper, air is used to simulate the vapor-liquid two-phase flow instead of water vapor. According to the existing mature hydraulic model of nuclear main pump, the corresponding hydraulic prototype is designed and manufactured, and the experimental study is carried out on the hydraulic prototype. In order to understand the flow characteristics of the nuclear main pump under the gas-liquid two-phase flow condition, the steady and unsteady numerical simulation of the existing mature nuclear main pump model under different gas holdup conditions was carried out. The simulation results reveal the variation laws of gas distribution and velocity vector nephogram of the main nuclear pump under different air content: gas accumulation is easy to occur at the inlet and back of the impeller due to the action of centrifugal force and pressure gradient; gas trapping is easy to occur in the twisted radial guide vane structure; the spherical volute is easy to occur; the gas trapping phenomenon is caused by the twisted radial guide vane structure. The unsteady numerical simulation reveals that there is a certain positive correlation between the gas holdup and the uneven distribution of pressure at the impeller outlet, and that the uneven distribution of pressure at the impeller outlet and the amplitude of pressure fluctuation at the impeller working face are both affected by the higher gas holdup. In order to further understand the movement characteristics of the nuclear main pump under two-phase flow conditions, the hydraulic performance and the gas volume distribution in the flow passage of the nuclear main pump were analyzed under different air content in the reversed full working condition. With the increase of flow rate, the influence of void fraction on the torque characteristics of the nuclear main pump decreases gradually under the reverse flow braking condition and the reverse pump condition, but the reverse flow braking condition is just the opposite; under the reverse flow braking condition and the reverse pump condition, the high void fraction mainly concentrates on the blades. The gas volume fraction distribution in the impeller passage is extremely uneven in the region before the blade inlet. When the loss of water accident occurs in the loop, the nuclear main pump will operate under the condition of vapor-liquid two-phase flow. At this time, the performance of the nuclear main pump will have complex changes. Transient simulation. The influence of void fraction on the unsteady characteristics of the nuclear main pump is obtained by numerical simulation. With the increase of void fraction, the flow rate decreases continuously, the shaft torque and efficiency of the nuclear main pump decrease, and the small change law of the head value increases first and then decreases; with the increase of void fraction, the back of the impeller inlet and the middle back appear. High degree of gas accumulation occurs at the cover plate and the back of the outlet, and the fluctuation amplitude of gas holdup in the guide vane decreases gradually along the direction of liquid flow with obvious follow-up; the transient radial force decreases gradually with the increase of gas holdup and the difference between the maximum values of the two kinds of radial force decreases, and the transient pressure at the impeller and the tongue separation increases first and then decreases. The pressure in the guide vane increases gradually along the direction of liquid flow, but the fluctuation degree decreases. With the increase of air content, the low-speed region in the volute expands continuously, which indicates that the spherical volute is not conducive to the smooth outflow of gas. In order to design the hydraulic model of nuclear main pump with excellent hydraulic performance in liquid phase and low void content, the impeller inlet diameter Dj, blade envelope angle phi, blade outlet width b2, impeller outlet average diameter D2, impeller outlet placement angle beta 2, blade outlet inclination angle gamma and blade number Z7 are selected as the main factors which have great influence on the external characteristics of nuclear main pump. Orthogonal experimental design was carried out. Through the design, a set of optimum impeller geometric parameters and the order of seven factors affecting the external characteristics of the nuclear main pump in the liquid phase and low air content conditions were obtained. According to the sequence table of parameters affecting the external characteristics of the pump, the outlet placement angle and the envelope angle were selected as further optimization. Through further optimization, the optimal impeller geometric parameters combination was obtained to make the nuclear main pump have excellent hydraulic performance in liquid phase and low void content.
【學(xué)位授予單位】:江蘇大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TM623
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 袁建平;張克玉;司喬瑞;周幫倫;唐苑峰;金中坤;;基于非均相流模型的離心泵氣液兩相流動數(shù)值研究[J];農(nóng)業(yè)機械學(xué)報;2017年01期
2 何朝輝;盧熙寧;王青;;基于CFD仿真的核主泵流動特性研究[J];水泵技術(shù);2016年05期
3 王青;李天斌;盧熙寧;;基于CFD仿真的CAP1400核主泵流動特性研究[J];通用機械;2016年10期
4 張亞玲;符玲莉;李忠;;混流式核主泵內(nèi)部流動研究現(xiàn)狀與趨勢[J];綠色科技;2016年14期
5 李貴東;王洋;鄭意;馬小虎;梁龍一;胡日新;;氣液兩相條件下離心泵內(nèi)部流態(tài)及受力分析[J];排灌機械工程學(xué)報;2016年05期
6 陳杰;周濤;劉亮;李宇;;AP1000機組小破口失水事故模擬分析[J];華電技術(shù);2016年01期
7 付強;曹梁;朱榮生;習(xí)毅;王秀禮;;CAP1400核主泵導(dǎo)葉和葉輪匹配數(shù)研究[J];原子能科學(xué)技術(shù);2016年01期
8 付強;習(xí)毅;朱榮生;王秀禮;;AP1000核主泵的優(yōu)化設(shè)計及試驗研究[J];原子能科學(xué)技術(shù);2015年09期
9 李紅;姜波;陸天橋;;泵自吸過程氣液兩相流的可視化試驗[J];農(nóng)業(yè)機械學(xué)報;2015年08期
10 付強;習(xí)毅;朱榮生;袁壽其;王秀禮;;含氣率對AP1000核主泵影響的非定常分析[J];振動與沖擊;2015年06期
相關(guān)博士學(xué)位論文 前1條
1 王秀禮;核主泵內(nèi)多相流動瞬態(tài)水力特性研究[D];江蘇大學(xué);2013年
相關(guān)碩士學(xué)位論文 前9條
1 陳宗良;CAP1400核主泵水力設(shè)計及瞬態(tài)空化特性研究[D];江蘇大學(xué);2016年
2 林茵;CAP1400核主泵空化流場特性分析[D];大連理工大學(xué);2015年
3 張朋飛;基于CFD技術(shù)及正交法的礦用潛水泵葉輪優(yōu)化設(shè)計研究[D];河南理工大學(xué);2014年
4 王冕;氣液兩相流泵含氣量對泵性能的影響研究[D];武漢工程大學(xué);2013年
5 沈飛;AP1000核主泵高效水力模型設(shè)計與性能研究[D];大連理工大學(xué);2012年
6 張玉;壓水堆核主泵流場數(shù)值模擬和空化分析[D];浙江大學(xué);2011年
7 單玉姣;基于CFD的1000MW級核主泵水力模型模化計算方法研究[D];大連理工大學(xué);2010年
8 秦杰;核主泵過流部件水力設(shè)計與內(nèi)部流場數(shù)值模擬[D];大連理工大學(xué);2010年
9 劉夏杰;斷電事故下核主泵流動及振動特性研究[D];上海交通大學(xué);2008年
,本文編號:2214913
本文鏈接:http://sikaile.net/kejilunwen/dianlidianqilunwen/2214913.html