碳納米管修飾金屬硫化物的制備及其在儲能器件中的應用
[Abstract]:With the increasing global energy consumption and the rapid deterioration of the environment, the development of clean new energy has been widely concerned by scientists all over the world. As a new type of energy storage device, supercapacitor is widely used in many fields because of its high power density, high charge and discharge speed, long cycle life and environmental friendliness. With the flexibility and thinning of portable electronic products, the development of flexible all-solid-state supercapacitors has become a research hotspot. The performance of supercapacitors depends on the selection of electrode materials. Transition metal sulfides are widely used because of their high theoretical capacity and good conductivity. Carbon nanotubes (CNT) have good flexibility and mechanical stability and are often used as scaffolds to construct hybrid structures. Therefore, the combination of CNT and transition metal sulfides can not only improve the flexibility of the devices, but also improve the specific capacity. In this thesis, copper (CuS), zinc sulfide (ZnS) and manganese sulfide (MnS) and CNT (manganese sulfide) were used as core materials to prepare composite nanomaterials with different morphologies by hydrothermal synthesis method, and they were used in flexible all-solid supercapacitors. Show excellent electrochemical performance. The main research results of this thesis are as follows: (1) A layer of CuS nanowires was uniformly grown on the periphery of CNT by a simple two-step hydrothermal synthesis method. The synthesized CuS@CNT nanocomposites were used in supercapacitors at the current density of 1 Ag ~ (-1). The specific capacitance is up to 566.4 F g -1. Furthermore, S@CuS@CNT composite was synthesized by combining sulfur with CuS@CNT and used in lithium sulfur battery. When the current density is 0. 1 C, the capacity of the cell reaches 1019 mA h g -1. (2) an ultrathin ZnS nanocrystalline was synthesized on the periphery of CNT by a simple hydrothermal method based on template. By changing the concentration of Zn (NO3) 2 and hydrothermal reaction time, the formation process of ultrathin ZnS nanoparticles was demonstrated. Compared with the pure ZnS nanospheres, it has a larger specific surface area, which is conducive to the diffusion of ions in the electrolyte, thus showing a better electrochemical performance. The electrode material was assembled into a symmetrical all-solid supercapacitor, and the specific capacitance reached 159.6 F g-1 under 1 A g ~ (-1) test. Finally, the four devices were connected in series and charged. Light emitting diodes of different colors can be illuminated. (3) A layer of 緯 -MnS nanoparticles was successfully grown on the periphery of CNT by low cost hydrothermal reaction. A layer of silicon dioxide (Si O 2) was grown around CNT, which was beneficial to the vertical growth of 緯 -MnS along the longitudinal axis of CNT. Finally, the addition of sodium sulfide (Na2S) provided both sulfur source and Si O 2 removal. The controllable synthesis of 緯 -MnSCNT with different morphologies was achieved by changing the hydrothermal reaction time. When the material is used in supercapacitor, the specific capacitance is up to 641.9 F g ~ (-1) under 0.5 A g ~ (-1) test. After 3000 cycles of charge and discharge, the capacity retention rate is as high as 94.6%. Finally, symmetrical flexible all-solid state supercapacitors were assembled and showed excellent electrochemical performance.
【學位授予單位】:信陽師范學院
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:TB383.1;TM53
【相似文獻】
相關(guān)期刊論文 前10條
1 陳新麗;李偉善;;超級電容器電極材料的研究現(xiàn)狀與發(fā)展[J];廣東化工;2006年07期
2 許開卿;吳季懷;范樂慶;冷晴;鐘欣;蘭章;黃妙良;林建明;;水凝膠聚合物電解質(zhì)超級電容器研究進展[J];材料導報;2011年15期
3 梓文;;超高能超級電容器[J];兵器材料科學與工程;2013年04期
4 ;歐盟創(chuàng)新型大功率超級電容器問世[J];功能材料信息;2014年01期
5 周霞芳;;無污染 充電快 春節(jié)后有望面市 周國泰院士解密“超級電容器”[J];環(huán)境與生活;2012年01期
6 江奇,瞿美臻,張伯蘭,于作龍;電化學超級電容器電極材料的研究進展[J];無機材料學報;2002年04期
7 朱修鋒,王君,景曉燕,張密林;超級電容器電極材料[J];化工新型材料;2002年04期
8 景茂祥,沈湘黔,沈裕軍,鄧春明,翟海軍;超級電容器氧化物電極材料的研究進展[J];礦冶工程;2003年02期
9 朱磊,吳伯榮,陳暉,劉明義,簡旭宇,李志強;超級電容器研究及其應用[J];稀有金屬;2003年03期
10 賀福;碳(炭)材料與超級電容器[J];高科技纖維與應用;2005年03期
相關(guān)會議論文 前10條
1 馬衍偉;張熊;余鵬;陳堯;;新型超級電容器納米電極材料的研究[A];2009中國功能材料科技與產(chǎn)業(yè)高層論壇論文集[C];2009年
2 張易寧;何騰云;;超級電容器電極材料的最新研究進展[A];第二十八屆全國化學與物理電源學術(shù)年會論文集[C];2009年
3 鐘輝;曾慶聰;吳丁財;符若文;;聚苯乙烯基層次孔碳的活化及其在超級電容器中的應用[A];中國化學會第15屆反應性高分子學術(shù)討論會論文摘要預印集[C];2010年
4 趙家昌;賴春艷;戴揚;解晶瑩;;扣式超級電容器組的研制[A];第十二屆中國固態(tài)離子學學術(shù)會議論文集[C];2004年
5 單既成;陳維英;;超級電容器與通信備用電源[A];通信電源新技術(shù)論壇——2008通信電源學術(shù)研討會論文集[C];2008年
6 王燕;吳英鵬;黃毅;馬延風;陳永勝;;單層石墨用作超級電容器的研究[A];2009年全國高分子學術(shù)論文報告會論文摘要集(上冊)[C];2009年
7 趙健偉;倪文彬;王登超;黃忠杰;;超級電容器電極材料的設(shè)計、制備及性質(zhì)研究[A];中國化學會第27屆學術(shù)年會第10分會場摘要集[C];2010年
8 張琦;鄭明森;董全峰;田昭武;;基于薄液層反應的新型超級電容器——多孔碳電極材料的影響[A];中國化學會第27屆學術(shù)年會第10分會場摘要集[C];2010年
9 馬衍偉;;新型超級電容器石墨烯電極材料的研究[A];第七屆中國功能材料及其應用學術(shù)會議論文集(第7分冊)[C];2010年
10 劉不厭;彭喬;孫s,
本文編號:2214254
本文鏈接:http://sikaile.net/kejilunwen/dianlidianqilunwen/2214254.html