基于小信號模型的虛擬同步發(fā)電機(jī)穩(wěn)定性分析與設(shè)計研究
[Abstract]:Under the background of global energy crisis and environmental pollution, renewable energy has been developed rapidly in recent years because of its great potential for development and clean environmental protection. The distributed generation technology of renewable energy has high reliability. Compared with large-scale wind, the impact of photovoltaic power station on the stability of power grid is small, and has won scholars at home and abroad. As a special distributed generation system, micro-grid integrates distributed generation, load, power electronic devices and energy storage into an independent power generation and supply system, which is conducive to the large-scale application of renewable energy and has become a research hotspot all over the world. Due to the traditional PQ control, Vf control and droop control are difficult to meet the needs of independent and autonomous operation of microgrid, more and more scholars begin to pay attention to the concept of virtual synchronous generator. The main research contents are as follows: 1. By comparing droop control with small signal model of synchronous generator, droop control is proved to be a special case of virtual synchronous generator. A complete small-signal model of microgrid is established before and after power differential term is introduced into droop control. The effects of control parameters and line parameters on small-signal stability of the two systems are compared and analyzed, and the selection methods of control parameters are summarized. Sensitivity analysis is carried out, and the participation degree of each inverter state variable in the low frequency mode of the system and the variation of the line parameters in the system are compared. The dominance of the eigenvalues of the system is easier to change when the system is droop controlled. Finally, the simulation results under different operating conditions verify the correctness of the modeling, analysis and conclusion. 2. A virtual synchronous generator control strategy without current sensor is designed. The control strategy includes the motion equation of the prime mover and rotor, voltage-reactive power control. And the three main parts of the transmission line power calculation equation, in which the virtual synchronous generator does not need current sensor by innovatively using the transmission line power calculation equation to calculate the virtual electromagnetic torque. The main conclusions are as follows: the synchronous torque of virtual synchronous generator is related to filter parameters, transmission line parameters, voltage gain of voltage-reactive power control link, reactive power gain, and the effect of reactive power gain on synchronous torque is greater than that of voltage gain; damping torque and rotor equation damping coefficient, prime mover frequency The relationship between the output voltage and reactive power of the virtual synchronous generator is related to the voltage gain and reactive power gain. Finally, the simulation results under various parameter conditions show that the proposed parameter design method is correct. Veracity. 3. A virtual synchronous generator control strategy is designed, which has the same response as the synchronous generator. The controller consists of several parts: the motion equation of the prime mover and rotor, the virtual excitation control, the virtual electromagnetic transient control and the double PI controller. The influence of some control parameters and circuit parameters of the VSR on the small signal stability of the system also conforms to the conclusion that the synchronous torque of the VSR is related to the filter parameters, the transmission line parameters, the damping torque is related to the damping coefficient of the rotor equation and the frequency drop coefficient of the prime mover. The design method of parameters of virtual excitation control and double PI controller is studied, and the method of parameter design is obtained. Finally, the simulation results show that the consistent virtual synchronous generator and synchronous generator have the same response.
【學(xué)位授予單位】:電子科技大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2017
【分類號】:TM31
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 程啟明;褚思遠(yuǎn);程尹曼;楊小龍;張強(qiáng);;基于改進(jìn)型下垂控制的微電網(wǎng)多主從混合協(xié)調(diào)控制[J];電力系統(tǒng)自動化;2016年20期
2 陳曉祺;賈宏杰;陳碩翼;張麗;;基于線路觀測器的孤島運行微電網(wǎng)改進(jìn)下垂控制策略[J];高電壓技術(shù);2016年07期
3 顏湘武;劉正男;徐恒波;蘇肖;任亞龍;張波;;虛擬同步發(fā)電機(jī)特性的三相逆變器小信號建模及分析[J];華北電力大學(xué)學(xué)報(自然科學(xué)版);2016年03期
4 顏湘武;劉正男;張波;呂正;蘇肖;徐恒波;任亞龍;;具有同步發(fā)電機(jī)特性的并聯(lián)逆變器小信號穩(wěn)定性分析[J];電網(wǎng)技術(shù);2016年03期
5 吳恒;阮新波;楊東升;陳欣然;鐘慶昌;呂志鵬;;虛擬同步發(fā)電機(jī)功率環(huán)的建模與參數(shù)設(shè)計[J];中國電機(jī)工程學(xué)報;2015年24期
6 王逸超;羅安;金國彬;;微網(wǎng)逆變器的改進(jìn)魯棒下垂多環(huán)控制[J];電工技術(shù)學(xué)報;2015年22期
7 程沖;楊歡;曾正;湯勝清;趙榮祥;;虛擬同步發(fā)電機(jī)的轉(zhuǎn)子慣量自適應(yīng)控制方法[J];電力系統(tǒng)自動化;2015年19期
8 馬藝瑋;楊蘋;陳思哲;趙卓立;王月武;;含柴油發(fā)電機(jī)和蓄電池儲能的獨立微電網(wǎng)頻率分層控制[J];控制理論與應(yīng)用;2015年08期
9 易桂平;;電網(wǎng)電壓不平衡條件下微網(wǎng)恒功率控制策略研究[J];電工技術(shù)學(xué)報;2015年14期
10 姚駿;杜紅彪;周特;譚義;;微網(wǎng)逆變器并聯(lián)運行的改進(jìn)下垂控制策略[J];電網(wǎng)技術(shù);2015年04期
相關(guān)博士學(xué)位論文 前3條
1 孟建輝;分布式電源的虛擬同步發(fā)電機(jī)控制技術(shù)研究[D];華北電力大學(xué);2015年
2 曾正;多功能并網(wǎng)逆變器及其微電網(wǎng)應(yīng)用[D];浙江大學(xué);2014年
3 楊向真;微網(wǎng)逆變器及其協(xié)調(diào)控制策略研究[D];合肥工業(yè)大學(xué);2011年
相關(guān)碩士學(xué)位論文 前2條
1 張中鋒;微網(wǎng)逆變器的下垂控制策略研究[D];南京航空航天大學(xué);2013年
2 楊俊虎;基于逆變器下垂控制的微電網(wǎng)運行特性及其控制系統(tǒng)研究[D];太原理工大學(xué);2012年
,本文編號:2211877
本文鏈接:http://sikaile.net/kejilunwen/dianlidianqilunwen/2211877.html