大規(guī)模電網(wǎng)分層分區(qū)解耦的最優(yōu)潮流
[Abstract]:With the expansion of power system scale and the promotion of regional power network interconnection project, the traditional centralized optimal power flow becomes more and more difficult to meet the requirements of on-line analysis and real-time control. At the same time, there are some problems such as high risk of data leakage, large amount of data transmission, calculation of "dimension disaster" and so on. Fast, efficient and stable partition decoupling distributed algorithm has become the key to solve large scale OPF. In order to realize the divisional decoupling computation, a large power system should be divided into several regional systems by using the partition method, and then the distributed decoupling computing of the multi-area system is carried out by using the decomposition and coordination algorithm. Therefore, this paper mainly involves two main contents, one is partition method, the other is decomposition and coordination algorithm. In the area of power grid partition, this paper proposes a voltage partition method. 500kV / 220kV electromagnetic ring network, which is suitable for the hierarchical partition structure, will bring a lot of adverse effects to the power system operation. It will be the development direction of the power network to open the electromagnetic ring network to form a layered and partitioned grid structure. Based on the characteristics of hierarchical partition structure, a partition method based on 220kV voltage grade is proposed. The large power grid is divided into transmission networks with 500kV and above voltage levels and high voltage distribution networks with multiple 220kV and voltage levels below. In this way, several subnets with moderate scale and weak coupling between regions can be obtained, which are also suitable for power dispatching based on voltage level in reality. In the realization of classifying the whole network data by region, the nodal injection current method is proposed. In order to solve the optimal power flow problem for multi-region systems, two efficient decomposition and coordination algorithms, the decomposition coordinated interior point method, are used to improve the approximate Newton direction method. By dividing the boundary nodes into two and adding the coupling constraints, the decomposition and coordination interior point method realizes the equivalent transformation of the multi-region model, and uses the robust modern interior point method to solve the problem. The internal variables of each region are kept independent of each other, only the information of boundary variables is transferred and coordinated, thus the distributed optimal power flow calculation after partition decoupling is realized, and the improved approximate Newton direction method is based on the approximate Newton direction method. The gradient part of the power flow equation is preserved in the reduced correction equation, which makes the obtained approximate Newton direction approach to the pure Newton direction better, and it can also achieve complete decoupling for the strongly coupled system. Both of the proposed decomposition and coordination algorithms have a remarkable characteristic, and the modified equations have diagonal edge structure. The diagonal triangulation structure can be used to reduce the order decoupling of the modified equation, which greatly reduces the dimension of the modified equation, improves the computing speed and reduces the computer memory consumption, and also realizes the partition decoupling calculation. Firstly, the proposed node injection current method is used to realize the fast partitioning of power system. Then, two decomposition and coordination algorithms are used to verify the optimal power flow of the multi-area system formed after partitioning. The results show that the two decoupling algorithms can improve the efficiency of calculation and realize the partition decoupling calculation of large grid. This decoupling method also has a wide application prospect for other large-scale optimization problems.
【學(xué)位授予單位】:廣西大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TM744
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 汪超群;韋化;吳思緣;;計(jì)及風(fēng)電不確定性的隨機(jī)安全約束機(jī)組組合[J];電網(wǎng)技術(shù);2017年05期
2 呂仁周;白曉清;李佩杰;代景龍;林頌晨;;基于交替方向乘子法的電動(dòng)汽車分散式充電控制[J];電力系統(tǒng)自動(dòng)化;2016年16期
3 汪超群;韋化;吳思緣;楊健;;七種最優(yōu)潮流分解協(xié)調(diào)算法的性能比較[J];電力系統(tǒng)自動(dòng)化;2016年06期
4 陽(yáng)育德;龔利武;韋化;;大規(guī)模電網(wǎng)分層分區(qū)無(wú)功優(yōu)化[J];電網(wǎng)技術(shù);2015年06期
5 李佩杰;陸鏞;白曉清;韋化;;基于交替方向乘子法的動(dòng)態(tài)經(jīng)濟(jì)調(diào)度分散式優(yōu)化[J];中國(guó)電機(jī)工程學(xué)報(bào);2015年10期
6 許立雄;劉俊勇;劉洋;茍競(jìng);閆占新;張里;吳楊;;基于負(fù)荷電流場(chǎng)的電網(wǎng)分區(qū)方法[J];電網(wǎng)技術(shù);2015年04期
7 陽(yáng)育德;韋化;李濱;;求解暫態(tài)穩(wěn)定約束最優(yōu)潮流模型的遞推降階解耦算法[J];中國(guó)電機(jī)工程學(xué)報(bào);2015年02期
8 戶秀瓊;顏偉;趙理;余娟;趙霞;;互聯(lián)電網(wǎng)聯(lián)網(wǎng)最優(yōu)潮流模型及其算法[J];電力系統(tǒng)自動(dòng)化;2013年03期
9 黎蕾;;增廣拉格朗日函數(shù)的兩種分解方法比較[J];重慶科技學(xué)院學(xué)報(bào)(自然科學(xué)版);2012年06期
10 李智;楊洪耕;;基于鄰近中心算法的無(wú)功優(yōu)化分解協(xié)調(diào)計(jì)算[J];電力自動(dòng)化設(shè)備;2012年12期
相關(guān)碩士學(xué)位論文 前10條
1 高冬那;地區(qū)電網(wǎng)電壓無(wú)功分層分區(qū)綜合協(xié)調(diào)控制的研究[D];華北電力大學(xué);2013年
2 李泉;河北南網(wǎng)分層分區(qū)及其穩(wěn)定性研究[D];華北電力大學(xué);2011年
3 李磊;無(wú)功優(yōu)化的控制策略研究[D];西南交通大學(xué);2010年
4 阮解瓊;基于綜合靈敏度的無(wú)功規(guī)劃優(yōu)化研究[D];昆明理工大學(xué);2009年
5 佟永吉;沈陽(yáng)地區(qū)500kV/220kV電網(wǎng)電磁解環(huán)方法和技術(shù)的研究[D];東北大學(xué);2009年
6 岳曉華;基于全網(wǎng)分區(qū)的多目標(biāo)分布式無(wú)功優(yōu)化[D];山東大學(xué);2008年
7 溫力力;電力系統(tǒng)多區(qū)域無(wú)功優(yōu)化分布式算法研究[D];重慶大學(xué);2007年
8 李民;鎮(zhèn)江電網(wǎng)分層分區(qū)運(yùn)行的研究[D];東南大學(xué);2006年
9 蔡廣林;基于PC網(wǎng)格的水火電力系統(tǒng)最優(yōu)潮流分布式計(jì)算研究[D];廣西大學(xué);2005年
10 李曉華;基于電網(wǎng)分區(qū)和遺傳算法的無(wú)功規(guī)劃優(yōu)化[D];山東大學(xué);2005年
,本文編號(hào):2211289
本文鏈接:http://sikaile.net/kejilunwen/dianlidianqilunwen/2211289.html