基于智能優(yōu)化算法的熱工大慣性對(duì)象模型辨識(shí)研究
[Abstract]:The model identification of large inertia object is the basis of studying the thermal control problem. Determining the structure and parameters of the model is an important part of the design, debugging and commissioning of the control system. After the object model is determined or identified, the actual control system can be optimized for parameters, which can effectively improve the quality and efficiency of the control system and ensure the safety of the production process. In this paper, based on the model identification technology and pid parameter optimization technology, based on the actual operation data of typical large inertia thermal engineering object, the improved particle swarm optimization algorithm is used to identify the thermal object. The main factors affecting the system identification results and the problems that should be paid attention to in the identification process are analyzed. The parameters of the PID controller are optimized by using the identification results. The model identification of thermal objects using PSO algorithm has the advantages of high speed, flexibility and convenience. However, PSO algorithm is easy to fall into local optimal solution, easy to prematurity and low searching precision. Therefore, it is necessary to study the method of improving and improving the algorithm based on PSO algorithm. Firstly, chaotic search and simulated annealing are introduced into PSO, which makes the algorithm have better diversity and the ability to jump out of the local optimum. Secondly, combined with bacterial chemotaxis algorithm, repulsive operation is introduced to enhance the searching ability of particles. The improved algorithm is verified by the typical function, and the convergence, stability and global search ability of the algorithm are obviously improved. Based on the understanding of the structure of the thermal model, the improved particle swarm optimization algorithm is applied to the model identification of the temperature object of the laboratory boiler and the main steam temperature object of the supercritical boiler with multiple input and single output. The identification results of several improved algorithms are analyzed and compared. The results show that the bacterial chemoattractant particle swarm optimization algorithm has better adaptability and more accurate identification model for different thermal control systems.
【學(xué)位授予單位】:上海電力學(xué)院
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TM621
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 盧曉玲;馬平;;基于粒子群算法的超臨界機(jī)組給水系統(tǒng)模型辨識(shí)[J];華電技術(shù);2015年01期
2 侯曉寧;孫海蓉;;基于現(xiàn)場(chǎng)數(shù)據(jù)和PSO算法的機(jī)組主汽溫系統(tǒng)辨識(shí)[J];計(jì)算機(jī)仿真;2014年12期
3 韋根原;趙鵬旭;韓璞;;基于混沌粒子群算法的火電機(jī)組熱工過程辨識(shí)方法[J];熱力發(fā)電;2014年10期
4 薛曉岑;向文國(guó);呂劍虹;;基于差分進(jìn)化與RBF神經(jīng)網(wǎng)絡(luò)的熱工過程辨識(shí)[J];東南大學(xué)學(xué)報(bào)(自然科學(xué)版);2014年04期
5 楊偉新;張曉森;;粒子群優(yōu)化算法綜述[J];甘肅科技;2012年05期
6 劉長(zhǎng)平;葉春明;;基于邏輯自映射的變尺度混沌粒子群優(yōu)化算法[J];計(jì)算機(jī)應(yīng)用研究;2011年08期
7 趙志剛;常成;;自適應(yīng)混沌粒子群優(yōu)化算法[J];計(jì)算機(jī)工程;2011年15期
8 李巖;王東風(fēng);焦嵩鳴;韓璞;;采用微分進(jìn)化算法和徑向基函數(shù)神經(jīng)網(wǎng)絡(luò)的熱工過程模型辨識(shí)[J];中國(guó)電機(jī)工程學(xué)報(bào);2010年08期
9 田東平;;基于Tent混沌序列的粒子群優(yōu)化算法[J];計(jì)算機(jī)工程;2010年04期
10 李攀峰;楊晨;;基于徑向基函數(shù)神經(jīng)網(wǎng)絡(luò)的熱工過程模型辨識(shí)[J];重慶大學(xué)學(xué)報(bào);2009年09期
相關(guān)博士學(xué)位論文 前1條
1 孫劍;大型循環(huán)流化床鍋爐燃燒系統(tǒng)特性與建模研究[D];華北電力大學(xué)(北京);2010年
相關(guān)碩士學(xué)位論文 前10條
1 彭岱;細(xì)菌覓食優(yōu)化算法研究及其應(yīng)用[D];沈陽(yáng)理工大學(xué);2015年
2 朱波;蟻群算法在1000MW火電機(jī)組模型辨識(shí)中的應(yīng)用[D];華北電力大學(xué);2014年
3 馬磊;粒子群算法在1000MW火電機(jī)組模型辨識(shí)中的應(yīng)用[D];華北電力大學(xué);2014年
4 黃金山;基于和聲搜索算法的主汽溫控制系統(tǒng)的建模與優(yōu)化[D];華北電力大學(xué);2014年
5 謝秀華;基于改進(jìn)粒子群優(yōu)化算法的聚類算法研究[D];廣西大學(xué);2013年
6 丁滿;大型火電機(jī)組建模與驗(yàn)?zāi)7椒ǖ难芯縖D];華北電力大學(xué);2013年
7 袁世通;1000MW超超臨界機(jī)組燃燒系統(tǒng)建模研究[D];華北電力大學(xué);2011年
8 時(shí)樂;基于遺傳算法的熱工過程辨識(shí)[D];華北電力大學(xué)(河北);2009年
9 高磊;室溫PID控制實(shí)驗(yàn)系統(tǒng)的研究[D];天津大學(xué);2008年
10 李欣欣;具有分工特征的蟻群算法及其在熱工控制系統(tǒng)中的應(yīng)用[D];華北電力大學(xué)(北京);2008年
,本文編號(hào):2183032
本文鏈接:http://sikaile.net/kejilunwen/dianlidianqilunwen/2183032.html