天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > 電氣論文 >

W型煤粉—流化床爐內(nèi)的兩相流動(dòng)數(shù)值模擬

發(fā)布時(shí)間:2018-08-07 12:40
【摘要】:煤炭資源一直在我國的工業(yè)發(fā)展中扮演很重要的角色,無煙煤以及貧煤在煤炭總量中所占比例很大,因此近些年我國電廠陸續(xù)采用W型火焰燃燒技術(shù)的相關(guān)鍋爐,專門用于燃燒無煙煤。W型火焰鍋爐雖然有燃燒效率高等一系列優(yōu)點(diǎn),但是暴露出的結(jié)構(gòu)復(fù)雜、NO_x排放量高、燃燒穩(wěn)定性差等問題一直制約和影響W型火焰鍋爐的發(fā)展。引入復(fù)合燃燒技術(shù)以及復(fù)合鍋爐改造技術(shù)的方案是改進(jìn)W型火焰鍋爐的不錯(cuò)的選擇。本文針對(duì)某廠350MW亞臨界W型火焰鍋爐進(jìn)行復(fù)合鍋爐技術(shù)改造,采用調(diào)整冷灰斗傾角,在下方續(xù)接鼓泡流化床的方案,充分利用流化床的穩(wěn)定燃燒、脫硫效率高、負(fù)荷調(diào)節(jié)范圍大等優(yōu)勢彌補(bǔ)W型火焰鍋爐不足。由于時(shí)間和資金問題,現(xiàn)階段只針對(duì)復(fù)合鍋爐進(jìn)行數(shù)值模擬計(jì)算,研究分析W型煤粉-流化床復(fù)合鍋爐的流場特性以及異相反應(yīng)的燃燒特性。本文使用歐拉-歐拉雙流體等模型,在原W型火焰鍋爐配風(fēng)不變的情況下,模擬選取3個(gè)不同流化速度,研究流化床中不同大小流化速度對(duì)W型煤粉-流化床復(fù)合爐的流場特性的影響。通過分析不同工況的中心截面的流場和濃度場分布,流化速度可以影響到“W”型氣流的形成、空間位置的高低以及流場的對(duì)稱性。通過觀察三次風(fēng)口橫截面空氣、小顆粒的速度云圖,可以更直觀地分析“W”型氣流的位置變化;通過在不同高度截線分析,研究空氣、不同粒徑的顆粒的濃度分布和速度分布,從而推出合理工況以及不同流化速度對(duì)整個(gè)流場的影響;在流場合理的工況中,截選多個(gè)橫截面,觀察分析整個(gè)復(fù)合爐的流場特性。選取流化床流化速度為1.3m/s的工況,保持配風(fēng)風(fēng)率不變,只改變?nèi)物L(fēng)下傾角度,模擬選擇下傾角度為0°、15°、30°、45°和60°一共五個(gè)工況,研究分析三次風(fēng)傾角對(duì)復(fù)合爐流場的影響。通過對(duì)比五個(gè)工況中心截面上的濃度、速度分布,得出流場分布左右對(duì)稱的三次風(fēng)傾角。通過分析下行速度衰減曲線以及不同高度截線上的速度分布,進(jìn)一步研究三次風(fēng)傾角對(duì)復(fù)合爐流場的影響。針對(duì)W型煤粉-流化床復(fù)合爐內(nèi)燃燒模擬計(jì)算,先是對(duì)燃燒反應(yīng)模型的簡化和設(shè)計(jì),簡化之后的燃燒過程主要是碳顆粒與氧氣、二氧化碳進(jìn)行的異相反應(yīng),并編寫UDF控制化學(xué)反應(yīng)速率。選用流化速度為1.3m/s的工況,設(shè)置合理的邊界條件進(jìn)行燃燒模擬計(jì)算。選取爐膛中心截面研究分析流場、溫度場和濃度場的分布。三次風(fēng)中心截面上的速度和溫度分布反映出三次風(fēng)口的流場分布和燃燒狀況。選取三個(gè)不同截面上的中軸線上點(diǎn)的數(shù)據(jù)分析爐內(nèi)溫度、速度和濃度分布。同時(shí)又在復(fù)合爐三個(gè)不同區(qū)域選取不同高度的截線,分別研究W型火焰鍋爐、流化床以及兩者之間的過渡區(qū)域內(nèi)的速度和溫度分布。
[Abstract]:Coal resources have been playing a very important role in the industrial development of our country, anthracite and lean coal account for a large proportion of the total coal, so in recent years, power plants in China have adopted W-type flame combustion technology of related boilers. Although it has a series of advantages, such as high combustion efficiency and so on, the problems such as high NOx emission and poor combustion stability have been restricted and affected the development of W-type flame boiler. It is a good choice to improve W type flame boiler by introducing compound combustion technology and retrofitting technology of composite boiler. In this paper, the 350MW subcritical W type flame boiler of a certain factory is reformed with composite boiler technology. The scheme of adjusting the inclination of the cold ash bucket and connecting the bubbling fluidized bed below is adopted to make full use of the steady combustion of the fluidized bed and the desulfurization efficiency is high. The wide range of load regulation makes up for the shortage of W-type flame boiler. Due to the problem of time and fund, numerical simulation is carried out only for the composite boiler at this stage, and the characteristics of the flow field and the combustion characteristics of the heterogeneous reaction of the W-type coal-fluidized bed composite boiler are studied and analyzed. In this paper, Euler-Euler two-fluid model is used to simulate three different fluidization velocities under the condition that the distribution of air for the original W-type flame boiler is invariable. The effect of different fluidization rates on the flow field characteristics of W-type coal-fluidized bed composite furnace was studied. By analyzing the distribution of the flow field and concentration field of the central section under different working conditions, the fluidization velocity can affect the formation of "W" type airflow, the height of the space position and the symmetry of the flow field. By observing the velocity cloud diagram of the cross section of the third tuyere and the small particles, the position change of the "W" type airflow can be analyzed more intuitively, and the air can be studied by the section analysis at different heights. The distribution of concentration and velocity of particles with different particle sizes is used to deduce the influence of reasonable working conditions and different fluidization rates on the whole flow field, and in the reasonable working condition of the flow field, several cross-sections are intercepted and the flow field characteristics of the whole composite furnace are observed and analyzed. The fluidized bed fluidization velocity is selected as 1.3m/s condition, the air distribution rate is kept constant, and the downdip angle of the tertiary air is changed only. The downdip angle of 0 擄15 擄30 擄30 擄45 擄and 60 擄is selected in the simulation. The influence of the third air inclination angle on the flow field of the composite furnace is studied and analyzed. By comparing the concentration and velocity distribution on the central section of the five working conditions, the symmetrical distribution of the flow field and the third wind inclination angle are obtained. By analyzing the downlink velocity attenuation curve and the velocity distribution on different height sections, the influence of the third air inclination angle on the flow field of the composite furnace is further studied. In view of the combustion simulation calculation in W-type coal-fluidized bed composite furnace, the combustion reaction model is simplified and designed, and the combustion process after simplification is mainly the heterogeneous reaction of carbon particles with oxygen and carbon dioxide. The chemical reaction rate was controlled by UDF. The fluidization velocity is selected as 1.3m/s, and reasonable boundary conditions are set to simulate combustion. The distribution of flow field, temperature field and concentration field is analyzed by selecting the central section of furnace. The velocity and temperature distribution on the section of the tertiary air center reflects the distribution of the flow field and the combustion state of the tertiary air outlet. The temperature, velocity and concentration distribution in the furnace were analyzed by selecting the data of three points on the axis of three different sections. At the same time, the velocity and temperature distribution in the W-type flame boiler, fluidized bed and the transition zone between them were studied by selecting different section lines in three different regions of the compound furnace.
【學(xué)位授予單位】:哈爾濱工業(yè)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TM621.2

【參考文獻(xiàn)】

相關(guān)期刊論文 前10條

1 呂太;王奇;;W火焰鍋爐狹縫式燃燒器燃燒特性研究[J];熱力發(fā)電;2014年06期

2 楊晨;趙麗;何航行;;600MW超臨界W火焰鍋爐燃燒特性及水冷壁分布參數(shù)混合模擬[J];熱科學(xué)與技術(shù);2014年02期

3 楊麗;;中國煤炭科技發(fā)展現(xiàn)狀及展望[J];潔凈煤技術(shù);2012年03期

4 吳貴輝;;我國能源形勢及發(fā)展對(duì)策[J];中國工程科學(xué);2011年04期

5 劉炯天;;關(guān)于我國煤炭能源低碳發(fā)展的思考[J];中國礦業(yè)大學(xué)學(xué)報(bào)(社會(huì)科學(xué)版);2011年01期

6 趙劍峰;;低碳經(jīng)濟(jì)視角下煤炭工業(yè)清潔利用分析及政策建議[J];煤炭學(xué)報(bào);2011年03期

7 曹湘洪;;實(shí)現(xiàn)我國煤化工、煤制油產(chǎn)業(yè)健康發(fā)展的若干思考[J];化工進(jìn)展;2011年01期

8 ;Drag models for simulating gas solid flow in the turbulent fluidization of FCC particles[J];Particuology;2009年04期

9 裴西平;;中國無煙煤生產(chǎn)、消費(fèi)及進(jìn)出口分析[J];中國煤炭;2009年06期

10 周建軍;王炯;冉景煜;蒲舸;張力;唐強(qiáng);;在CFB鍋爐中煤粉不同噴入位置對(duì)爐內(nèi)固相運(yùn)動(dòng)特性的影響[J];動(dòng)力工程;2007年05期

相關(guān)博士學(xué)位論文 前2條

1 況敏;斗巴W火焰鍋爐及多次引射分級(jí)燃燒技術(shù)研究[D];哈爾濱工業(yè)大學(xué);2012年

2 李清海;層燃—流化復(fù)合垃圾焚燒爐燃燒與排放研究[D];清華大學(xué);2007年

相關(guān)碩士學(xué)位論文 前2條

1 徐鵬飛;煤粉—流化床復(fù)合燃燒數(shù)值模擬[D];哈爾濱工業(yè)大學(xué);2013年

2 郭玉泉;W火焰鍋爐燃燒及運(yùn)行特性試驗(yàn)研究[D];山東大學(xué);2006年



本文編號(hào):2170053

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/dianlidianqilunwen/2170053.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶2b577***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com