鋰離子蓄電池組管理系統(tǒng)設(shè)計(jì)
[Abstract]:Battery charge and discharge control, cell balance management, battery charge state (sOC) estimation and various important control parameters of lithium ion battery are the core work of lithium ion battery management system. Aiming at the core problems of the lithium battery management, this paper mainly studies the following aspects: the final purpose of developing the lithium battery management system is to complete the charge control of the battery. An ideal control method can greatly compress the battery charge time and effectively enhance the working life of the battery to improve its reliability and safety. A battery management system that meets the charging characteristics of lithium ion batteries is essential. The traditional charging management method is single, which can not meet the charging requirement or engineering application of lithium ion battery. In view of this situation, this paper designs a kind of intelligent charging management scheme which can be popularized in engineering. Based on the traditional lithium charging control, a phased control method is proposed. The current charging control mode is determined by the collected battery pack voltage. The charging process includes: precharge area, constant current region, pulse region and constant voltage area, the charging process includes: precharge area, constant current region, pulse region and constant voltage area. Temperature control mechanism is introduced in each charging stage to ensure the safety and lifetime of lithium ion batteries while charging rapidly. Because of the high design cost and low efficiency in the current single cell equalization control mode, a switching LC resonant equalization control circuit is designed in this paper. The LC energy storage element is used as the energy flow carrier in this scheme. Through the control and management of the switching matrix, the electric energy flow among the cells can be achieved, and the final goal of the equalization control of all the cells among the lithium batteries can be realized. Compared with other equalization methods, this method is not only easy to expand, but also more efficient. How to accurately estimate the current residual capacity of the battery pack is a common problem. On the basis of comparing the advantages and disadvantages of various current charge state calculations, a scheme of SOc estimation for lithium-ion batteries combined with experimental method and Peukert ammeter is proposed in this paper. By using the accuracy of the experimental method and the robustness of the ammeter method, this scheme can overcome the problem of real-time accurate estimation of the current residual capacity of the lithium battery pack. As a perceptual source of external information, how to accurately obtain the important control parameters of lithium battery is the premise of the operation of the whole management system. Aiming at the current problem of single cell voltage detection, a single cell detection circuit based on mutual conductance amplification is proposed. The circuit has the advantages of high precision, good temperature drift and high symmetry. In order to solve the difficulty of large-scale integration of lithium electric management system, this paper proposes a modular scheme and designs a modular detection circuit based on this assumption. Based on the idea of modularization in equalization circuit and important parameter acquisition, a centralized distributed lithium ion battery management system is proposed in this paper. The whole management module is divided into main control unit and monitoring unit. The responsibility of the main control unit is to complete the normal operation and control of the whole system, the responsibility of the monitoring unit is to be responsible for the detection of the parameters, and the design of the lithium ion battery management system is realized through the organic combination of the software and the hardware.
【學(xué)位授予單位】:華東理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TM912
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 劉興江,馮嬋,譚玲生,汪繼強(qiáng);鋰離子蓄電池市場(chǎng)、技術(shù)動(dòng)向與知識(shí)產(chǎn)權(quán)戰(zhàn)略分析[J];電源技術(shù);2005年07期
2 路慧;蘇金然;;鋰離子蓄電池的市場(chǎng)發(fā)展[J];電源技術(shù);2006年07期
3 王福鸞;;索尼公司的鋰離子蓄電池先進(jìn)技術(shù)[J];電源技術(shù);2006年10期
4 吳憩棠;;編者的話[J];汽車與配件;2009年26期
5 趙書利;金岑;喻濟(jì)兵;;鋰離子蓄電池技術(shù)應(yīng)用與發(fā)展[J];船電技術(shù);2009年12期
6 ;2012年全球鋰離子蓄電池市場(chǎng)規(guī)模高速增長(zhǎng)[J];電源技術(shù);2013年09期
7 張豪娟;美國(guó)陸軍電臺(tái)將使用鋰離子蓄電池[J];電池工業(yè);1998年06期
8 張鳳濤;胡欲立;溫杰;唐凡;;鋰離子蓄電池溫度場(chǎng)仿真分析[J];電源技術(shù);2014年02期
9 吳宇平,萬(wàn)春榮,姜長(zhǎng)印,李建軍,李陽(yáng)興;用溶膠-凝膠法制備鋰離子蓄電池材料[J];電源技術(shù);2000年02期
10 汪國(guó)杰,周震濤,潘慧銘;聚合物鋰離子蓄電池用凝膠聚合物電解質(zhì)[J];電源技術(shù);2001年01期
相關(guān)會(huì)議論文 前10條
1 王可;王琛;解晶瑩;潘延林;;月面巡視器及著陸器用鋰離子蓄電池低溫性能研究[A];中國(guó)宇航學(xué)會(huì)深空探測(cè)技術(shù)專業(yè)委員會(huì)第六屆學(xué)術(shù)年會(huì)暨863計(jì)劃“深空探測(cè)與空間實(shí)驗(yàn)技術(shù)”重大項(xiàng)目學(xué)術(shù)研討會(huì)論文集[C];2009年
2 張海鵬;柳玉磊;尋增霞;;礦用鋰離子蓄電池安全性能的試驗(yàn)研究[A];煤礦自動(dòng)化與信息化——第19屆全國(guó)煤礦自動(dòng)化與信息化學(xué)術(shù)會(huì)議暨中國(guó)礦業(yè)大學(xué)(北京)百年校慶學(xué)術(shù)會(huì)議論文集[C];2009年
3 張霜華;;論鋰離子蓄電池高新材料與鋰工業(yè)的發(fā)展[A];中國(guó)有色金屬學(xué)會(huì)第五屆學(xué)術(shù)年會(huì)論文集[C];2003年
4 周明中;瞿煒燁;許峰;史源;;鋰離子蓄電池深空探測(cè)控制技術(shù)[A];中國(guó)宇航學(xué)會(huì)深空探測(cè)技術(shù)專業(yè)委員會(huì)第八屆學(xué)術(shù)年會(huì)論文集(下篇)[C];2011年
5 王琛;潘延林;李克鋒;楊聰嬌;王穎;錢斌;;LiFePO_4在衛(wèi)星貯能電源中的應(yīng)用[A];上海市化學(xué)化工學(xué)會(huì)2006年度學(xué)術(shù)年會(huì)論文摘要集[C];2006年
6 趙煜娟;袁珊珊;李燕;劉欣艷;夏定國(guó);;溶膠-凝膠法合成鋰離子蓄電池用正極材料LiFePO_4[A];2005中國(guó)儲(chǔ)能電池與動(dòng)力電池及其關(guān)鍵材料學(xué)術(shù)研討會(huì)論文集[C];2005年
7 張斐秋;;新型綠色電池的發(fā)展及在信息通信產(chǎn)業(yè)中的應(yīng)用現(xiàn)狀和前景[A];2005'中國(guó)通信學(xué)會(huì)無(wú)線及移動(dòng)通信委員會(huì)學(xué)術(shù)年會(huì)論文集[C];2005年
8 王琛;李克鋒;任杰偉;潘延林;李國(guó)欣;;深空探測(cè)用鋰離子蓄電池貯能技術(shù)研究設(shè)想[A];中國(guó)宇航學(xué)會(huì)深空探測(cè)技術(shù)專業(yè)委員會(huì)第三屆學(xué)術(shù)會(huì)議論文集[C];2006年
9 武巍;王琛;王曉銳;李琳琳;潘延林;;鋰離子蓄電池在深空探測(cè)中的發(fā)展與應(yīng)用[A];中國(guó)宇航學(xué)會(huì)深空探測(cè)技術(shù)專業(yè)委員會(huì)第九屆學(xué)術(shù)年會(huì)論文集(中冊(cè))[C];2012年
10 胡學(xué)山;孫玉恒;林曉靜;吁霽;劉興泉;;鋰離子蓄電池正極材料Li_(1+δ)M_xV_(3-x)O_8(M=Ti、Co、Fe、Ni)的合成與電化學(xué)性能研究[A];第十二屆中國(guó)固態(tài)離子學(xué)學(xué)術(shù)會(huì)議論文集[C];2004年
相關(guān)重要報(bào)紙文章 前7條
1 云水;力神公司實(shí)現(xiàn)鋰離子蓄電池產(chǎn)業(yè)化[N];中國(guó)電子報(bào);2000年
2 柳悅;發(fā)展電動(dòng)自行車 需突破電池瓶頸[N];天津日?qǐng)?bào);2006年
3 孫傳灝;鋰離子電池安全成熱點(diǎn) 統(tǒng)一標(biāo)準(zhǔn)迫在眉睫[N];中國(guó)電子報(bào);2008年
4 易文;鋰離子電池安全隱患難除 亟待標(biāo)準(zhǔn)統(tǒng)一[N];電子資訊時(shí)報(bào);2008年
5 何德功;日本因何對(duì)鋰離子蓄電池情有獨(dú)鐘[N];經(jīng)濟(jì)參考報(bào);2010年
6 記者 楊亮;中國(guó)科學(xué)院院士何祚庥:推動(dòng)電動(dòng)車綠色發(fā)展[N];光明日?qǐng)?bào);2010年
7 張淑英;小電池孕育大商機(jī)[N];云南經(jīng)濟(jì)日?qǐng)?bào);2000年
相關(guān)碩士學(xué)位論文 前5條
1 劉赫名;空間鋰離子蓄電池組均衡管理系統(tǒng)的設(shè)計(jì)與實(shí)現(xiàn)[D];西安電子科技大學(xué);2013年
2 林偉;鋰離子蓄電池組管理系統(tǒng)設(shè)計(jì)[D];華東理工大學(xué);2017年
3 張曉芬;3,5-雙(二氰亞甲基)克酮酸鋰硼鹽系列電解質(zhì)的合成及性能研究[D];安徽大學(xué);2012年
4 葉翔;空間用鋰離子蓄電池正極材料LiFePO_4研究[D];華東理工大學(xué);2011年
5 孟召寶;鋰離子蓄電池正極材料LiNi_(0.5)Mn_(0.5)O_2的制備和電化學(xué)性質(zhì)研究[D];東北師范大學(xué);2009年
,本文編號(hào):2166611
本文鏈接:http://sikaile.net/kejilunwen/dianlidianqilunwen/2166611.html